- PII
- S30346479S0044185625040107-1
- DOI
- 10.7868/S3034647925040107
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 4
- Pages
- 423-431
- Abstract
- Покрытия Zr–Ti–B–C–N были получены методом реакционного импульсного магнетронного напыления при частотах 0, 50 и 350 кГц. Покрытия содержали высокую суммарную концентрацию неметаллических элементов в диапазоне 80–84 ат.% и обладали плотной малодефектной аморфной структурой. В покрытиях преобладали связи B–N, B–C и Zr–O. Твердость покрытий составила 8–9 ГПа, модуль упругости и упругое восстановление находилось в пределах 126–144 ГПа и 36–40% соответственно. Наименьший коэффициент трения ~0,15 имело покрытие, осажденное при частоте 350 Гц. Максимальный оптический коэффициент пропускания ~90% показало покрытие, полученное при 50 кГц, характеризующееся минимальной толщиной и повышенной концентрацией кислорода. Покрытия Zr–Ti–B–C–N оптимального состава превосходили по коэффициенту пропускания образцы сравнения Zr–B–N.
- Keywords
- Date of publication
- 17.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 30
References
- 1. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Kozlova N.S. et al. // Surface and Coatings Technology. 2022. V. 448. № 128849. https://doi.org/10.1016/j.surfcoat.2022.128849
- 2. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Kozlova N.S. et al. // Surface and Coatings Technology. 2023. V. 474. № 130042. https://doi.org/10.1016/j.surfcoat.2023.130042
- 3. Sytchenko A.D., Kozlova N.S., Zabelina E.V. et al. // Surfaces and Interfaces. 2023. V. 37. № 102654. https://doi.org/10.1016/j.surfin.2023.102654
- 4. Chertova A.D., Levanov A.V., Meshkov B.B. et al. // Powder Metallurgy аnd Functional Coatings. 2024. V. 18. № 5. P. 37–43. https://doi.org/10.17073/1997-308X-2024-5-37–43
- 5. Houska J., Kohout J., Mares P. et al. // Thin Solid Films. 2015. V. 586. P. 22–27. https://doi.org/10.1016/j.tsf.2015.04.023
- 6. Mareš P., Vlček J., Houška J. et al. // Thin Solid Films. 2019. V. 688. № 137334. https://doi.org/10.1016/j.tsf.2019.05.053
- 7. Houška J., Kohout J., Vlček J. // Thin Solid Films. 2013. V. 542. P. 225–231. https://doi.org/10.1016/j.tsf.2013.07.010
- 8. Luo Q.H., Lu Y.H. // Applied Surface Science. 2011. V. 258. № 3. P. 1021–1026. https://doi.org/10.1016/j.apsusc.2011.08.053
- 9. Holzschuh H. // International Journal of Refractory Metals and Hard Materials. 2002. V. 20. № 2. P. 143–149. https://doi.org/10.1016/S0263-4368 (02)00013-6
- 10. Zhang M., Jiang J., Houška J. et al. // Acta Materialia. 2014. V. 77. P. 212–222. https://doi.org/10.1016/j.actamat.2014.05.064
- 11. Lin J., Mishra B., Moore J.J. et al. // Surface and Coatings Technology. 2008. V. 203. № 5–7. P. 588–593. https://doi.org/10.1016/j.surfcoat.2008.06.083
- 12. Übleis A., Mitterer C., Ebner R. // Surface and Coatings Technology. 1993. V. 60. № 1–3. P. 571–576. https://doi.org/10.1016/0257-8972 (93)90155-H
- 13. Movassagh-Alanagh F., Abdollah-Zadeh A., Zolbin M.A. et al. // Tribology International. 2023. V. 179. P. 108137. https://doi.org/10.1016/j.triboint.2022.108137
- 14. Holzschuh H. // Thin Solid Films. 2004. V. 469–470. P. 92–98. https://doi.org/10.1016/j.tsf.2004.08.077
- 15. Qiu L., Chen H., Zeng F. et al. // Surface and Coatings Technology. 2024. V. 480. № 130599. https://doi.org/10.1016/j.surfcoat.2024.130599
- 16. Rebholz C., Leyland A., Larour P. et al. // Surface and Coatings Technology. 1999. V. 116–119. P. 648–653. https://doi.org/10.1016/S0257-8972 (99)00260-1
- 17. Wolfe D.E., Singh J., Narasimhan K. // Surface and Coatings Technology. 2003. V. 165. № 1. P. 8–25. https://doi.org/10.1016/S0257-8972 (02)00666-7
- 18. Gu Jian-D., Chen Pei-L. // Surface and Coatings Technology. 2006. V. 200. № 10. P. 3341–3346. https://doi.org/10.1016/j.surfcoat.2005.07.049
- 19. Braic M., Braic V., Balaceanu M. et al. // Materials Chemistry and Physics. 2011. V. 126. № 3. P. 818–825. https://doi.org/10.1016/j.matchemphys.2010.12.036
- 20. Neidhardt J., Czigány Z., Sartory B. et al. // International Journal of Refractory Metals and Hard Materials. 2010. V. 28. № 1. P. 23–31. https://doi.org/10.1016/j.ijrmhm.2009.07.016
- 21. Kelly P.J. // Vacuum. 2000. V. 56. № 3. P. 159–172. https://doi.org/10.1016/S0042-207X (99)00189-X
- 22. Tan X.-Q., Liu J.-Y., Niu J.-R. et al. // Materials. 2018. V. 11. № 1953. https://doi.org/10.3390/ma11101953
- 23. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Shvindina N.V. et al. // Ceramics International. 2018. V. 44. № 7. P. 7637–7646. https://doi.org/10.1016/j.ceramint.2018.01.187
- 24. Shtansky D.V., Kiryukhantsev-Korneev Ph.V., Sheveyko A.N. et al. // Surface and Coatings Technology. 2007. V. 202. № 4–7. P. 861–865. https://doi.org/10.1016/j.surfcoat.2007.05.064
- 25. Kiryukhantsev-Korneev Ph.V., Chertova A.D., Chudarin F.I. et al. // Surface and Coatings Technology. 2024. V. 484. № 130797. https://doi.org/10.1016/j.surfcoat.2024.130797
- 26. Iordanova I., Kelly P.J., Burova M. et al. // Thin Solid Films. 2012. V. 520. P. 5333–5339. https://doi.org/10.1016/j.tsf.2012.03.097
- 27. Audronis M., Kelly P.J., Leyland A. et al. // Thin Solid Films. 2006. V. 515. P. 1511–1516. https://doi.org/10.1016/j.tsf.2006.04.026
- 28. Richter N.A., Yang B., Barnard J.P. et al. // Applied Surface Science. 2023. V. 635. 157709. https://doi.org/10.1016/j.apsusc.2023.157709
- 29. Potanin A.Yu., Zaitsev A.A., Pogozhev Yu.S. et al. // Ceramics International. 2024. V. 50(22,B). P. 47433–47444. https://doi.org/10.1016/j.ceramint.2024.09.094
- 30. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Sviridova T.A. et al. // Surface and Coatings Technology. 2022. V. 442. P. 128141. https://doi.org/10.1016/j.surfcoat.2022.128141
- 31. Kiryukhantsev-Korneev F.V. // Russian Journal of Non-Ferrous Metals. 2014. V. 55. P. 494–504. https://doi.org/10.3103/S1067821214050137
- 32. Chertova A.D., Sidorenko D.A., Levashov E.A. et al. // Vacuum. 2024. V. 227. № 113456. https://doi.org/10.1016/j.vacuum.2024.113456
- 33. García J., Moreno M., Wan W. et al. // Crystals. 2021. V. 11. № 158. https://doi.org/10.3390/cryst11020158
- 34. Ul-Hamid A. // J. Adv. Res. 2021. V. 29. P. 107–119. https://doi.org/10.1016/j.jare.2020.11.010
- 35. Tanno Y., Azushima A. // Surface and Coatings Technology. 2009. V. 203. № 23. P. 3631–3637. https://doi.org/10.1016/j.surfcoat.2009.05.043
- 36. Kim Y.-S., Park H.-J., Kim Y.-S. et al. // Coatings. 2024. V. 14. № 144. https://doi.org/10.3390/coatings14010144
- 37. Rogov A.V., Martynenko Y.V., Kapustin Y.V. et al. // Technical Physics. 2018. V. 63. P. 700–710. https://doi.org/10.1134/S1063784218050195
- 38. Lu Y.H., Liu Z.-J., Shen Y.G. // Acta Materialia. 2006. V. 54. P. 2897–2905. https://doi.org/10.1016/j.actamat.2006.02.027
- 39. Heau C., Terrat J.P. // Surface and Coatings Technology. 1998. V. 108–109. P. 332–339. https://doi.org/10.1016/S0257-8972 (98)00621-5
- 40. Nandee R., Chowdhury M.A., Hossain N. et al. // Results in Engineering. 2024. V. 21. № 101738. https://doi.org/10.1016/J.RINENG.2023.101738
- 41. Pellegrinoa S., Trocellier P., Thomé L. et al. // Nuclear Instruments and Methods in Physics Research Section B. 2019. V. 454. P. 61–67. https://doi.org/10.1016/j.nimb.2019.02.012
- 42. Wdowik U.D., Twardowska A., Rajchel B. // Advances in Condensed Matter Physics. 2017. V. 1. № 4207301. https://doi.org/10.1155/2017/4207301
- 43. Rizzo A., Valerini D., Capodieci L. et al. // Applied Surface Science. 2018. V. 427. P. 994–1002 https://doi.org/10.1016/j.apsusc.2017.08.032
- 44. Dreiling I., Haug A., Holzschuh H. et al. // Surface and Coatings Technology. 2009. V. 204. № 6–7. P. 1008–1012. https://doi.org/10.1016/j.surfcoat.2009.05.029
- 45. Lin J., Mishra B., Moore J.J. et al. // Surface and Coatings Technology. 2008. V. 203. № 5–7. P. 588–593. https://doi.org/10.1016/j.surfcoat.2008.06.083
- 46. Vlček J., Steidl P., Kohout J. et al. // Surface and Coatings Technology. 2013. V. 215. P. 186–191. https://doi.org/10.1016/j.surfcoat.2012.08.084
- 47. Singh K., Krishnamurthy N., Suri A.K. // Tribology International. 2012. V. 50. P. 16–25. https://doi.org/10.1016/j.triboint.2011.12.023
- 48. Abad M., Sánchez-López J., Brizuela M. et al. // Thin Solid Films. 2010. V. 518. № 19. P. 5546–5552. https://doi.org/10.1016/j.tsf.2010.04.038
- 49. Huang S., Zhao Q., Lin C. et al. // Materials Science and Engineering A. 2021. V. 818. № 141394. https://doi.org/10.1016/j.msea.2021.141394
- 50. Vanegas P.H.S., Calderon V.S., Alfonso O.J.E. et al. // Applied Surface Science. 2019. V. 481. P. 1249–1259. https://doi.org/10.1016/J.APSUSC.2019.03.128