RAS Chemistry & Material ScienceФизикохимия поверхности и защита материалов Protection of Metals and Physical Chemistry of Surfaces

  • ISSN (Print) 0044-1856
  • ISSN (Online) 3034-6479

Комплексы полианилина с сульфированным полисульфоном, их структура и сенсорные свойства

PII
S0044185625010058-1
DOI
10.31857/S0044185625010058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
56-66
Abstract
Физикохимия поверхности и защита материалов, Комплексы полианилина с сульфированным полисульфоном, их структура и сенсорные свойства
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Ciric-Marjanovic G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications // Synthetic Metals. 2013. Vol. 177. P. 1–47.
  2. 2. Gribkova O.L., Nekrasov A.A., Trchova M., et al. Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain // Polymer. 2011. Vol. 52, № 12. P. 2474–2484.
  3. 3. Boeva Z.A., Sergeyev V.G. Polyaniline: Synthesis, properties, and application // Polymer Science – Series C. 2014. Vol. 56, № 1. P. 144–153.
  4. 4. Sapurina I.Y., Kompan M.E., Malyshkin V.V., et al. Properties of proton-conducting nafion-type membranes with nanometer-thick polyaniline surface layers // Russian Journal of Electrochemistry. 2009. Vol. 45, № 6. P. 697–706.
  5. 5. Berezina N.P., Shkirskaya S.A., Kolechko M.V., et al. Barrier effects of polyaniline layer in surface modified MF-4SK/Polyaniline membranes // Russian Journal of Electrochemistry. 2011. Vol. 47, № 9. P. 995–1005.
  6. 6. Berezina N.P., Kononenko N.A., Sytcheva A.A.R., et al. Perfluorinated nanocomposite membranes modified by polyaniline: Electrotransport phenomena and morphology // Electrochimica Acta. 2009. Vol. 54, № 8. P. 2342–2352.
  7. 7. Lysova A.A., Stenina I.A., Dolgopolov S.V., et al. Asymmetric ion transport in perfluorinated membranes MF-4SC doped with polyaniline // Doklady Physical Chemistry. 2009. Vol. 427, № 2. P. 142–145.
  8. 8. Исакова А.А., Грибкова О.Л., Алиев А.Д. и др. Синтез полианилина в пленках полиэтилена с привитым сульфированным полистиролом и свойства этих пленок // Физикохимия поверхности и защита материалов. 2020. Vol. 56, № 4. P. 406–415.
  9. 9. Dizman C., Tasdelen M.A., Yagci Y. Recent advances in the preparation of functionalized polysulfones // Polymer International. 2013. Vol. 62, № 7. P. 991–1007.
  10. 10. Goel V., Tanwar R., Mandal U. Performance enhancement of commercial ultrafiltration polysulfone membrane via in situ polymerization of aniline using copper chloride as a catalyst // Journal of Chemical Technology and Biotechnology. 2021. Vol. 96, № 2. P. 502–513.
  11. 11. Sarihan A. Development of high-permeable PSf/PANI-PAMPSA composite membranes with superior rejection performance // Materials Today Communications. 2020. Vol. 24. P. 101104.
  12. 12. Wu H., Shi C., Zhu Q., et al. Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane // Biosensors and Bioelectronics. 2021. Vol. 171. P. 112722.
  13. 13. Abu-Thabit N., Umar Y., Ratemi E., et al. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers // Sensors. 2016. Vol. 16, № 7. P. 986.
  14. 14. Lu Y., Wang L., Zhao B., et al. Fabrication of conducting polyaniline composite film using honeycomb ordered sulfonated polysulfone film as template // Thin Solid Films. 2008. Vol. 516, № 18. P. 6365–6370.
  15. 15. Bai H., Shi G. Gas sensors based on conducting polymers // Sensors. 2007. Vol. 7, № 3. P. 267–307.
  16. 16. Jin Z., Su Y., Duan Y. Development of a polyaniline-based optical ammonia sensor // Sensors and Actuators B: Chemical. 2001. Vol. 72, № 1. P. 75–79.
  17. 17. Kebiche H., Debarnot D., Merzouki A., et al. Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods // Analytica Chimica Acta. 2012. Vol. 737. P. 64–71.
  18. 18. Li D.Y., Liu L.X., Wang Q.W., et al. Functional Polyaniline/MXene/Cotton Fabrics with Acid/Alkali-Responsive and Tunable Electromagnetic Interference Shielding Performances // ACS Applied Materials and Interfaces. 2022. Vol. 14, № 10. P. 12703–12712.
  19. 19. Duboriz I., Pud A. Polyaniline/poly(ethylene terephthalate) film as a new optical sensing material // Sensors and Actuators, B: Chemical. 2014. Vol. 190. P. 398–407.
  20. 20. Christie S., Scorsone E., Persaud K., et al. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline // Sensors and Actuators B: Chemical. 2003. Vol. 90, № 1–3. P. 163–169.
  21. 21. Mohammed H.A., Rahman N.A., Ahmad M.Z., et al. Sensing Performance of Modified Single Mode Optical Fiber Coated with Nanomaterials-Based Ammonia Sensors Operated in the C-Band // IEEE Access. 2019. Vol. 7. P. 5467–5476.
  22. 22. Gribkova O., Kabanova V., Tverskoy V., et al. Comparison of Optical Ammonia-Sensing Properties of Conducting Polymer Complexes with Polysulfonic Acids // Chemosensors. 2021. Vol. 9, № 8. P. 206.
  23. 23. Komkova E.N., Wessling M., Krol J., et al. Influence of the nature of polymer matrix and the degree of sulfonation on physicochemical properties of membranes // Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C – Kratkie Soobshcheniya. 2001. Vol. 43, № 3. P. 486–495.
  24. 24. Brousse C., Chapurlat R., Quentin J.P. New membranes for reverse osmosis I. Characteristics of the base polymer: sulphonated polysulphones // Desalination. 1976. Vol. 18, № 2. P. 137–153.
  25. 25. Gribkova O.L., Kabanova V.A., Nekrasov A.A. Electrodeposition of thin films of polypyrrole-polyelectrolyte complexes and their ammonia-sensing properties // Journal of Solid State Electrochemistry. 2020. Vol. 24, № 11–12. P. 3091–3103.
  26. 26. Rabinovich V. A., Yakovlevich K.Z. Kratkii khimicheskii spravochnik (Short chemical handbook). Khimiya. Moscow: Khimiya, 1977. 376 p.
  27. 27. Stejskal J., Kratochvíl P., Radhakrishnan N. Polyaniline dispersions 2. UV—Vis absorption spectra // Synthetic Metals. 1993. Vol. 61, № 3. P. 225–231.
  28. 28. Gospodinova N., Terlemezyan L. Conducting polymers prepared by oxidative polymerization: Polyaniline // Progress in Polymer Science (Oxford). 1998. Vol. 23, № 8. P. 1443–1484.
  29. 29. Sapurina I.Y., Stejskal J. The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products // Russian Chemical Reviews. 2011. Vol. 79, № 12. P. 1123–1143.
  30. 30. Kuo C.W., Wen T.C. Dispersible polyaniline nanoparticles in aqueous poly(styrenesulfonic acid) via the interfacial polymerization route // European Polymer Journal. 2008. Vol. 44, № 11. P. 3393–3401.
  31. 31. Iakobson O.D., Gribkova O.L., Nekrasov A.A., et al. A stable aqueous dispersion of polyaniline and polymeric acid // Protection of Metals and Physical Chemistry of Surfaces. 2016. Vol. 52, № 6. P. 1005–1011.
  32. 32. Nekrasov A.A., Gribkova O.L., Iakobson O.D., et al. Raman spectroelectrochemical study of electrodeposited polyaniline doped with polymeric sulfonic acids of different structures // Chemical Papers. 2017. Vol. 71, № 2. P. 449–458.
  33. 33. Morávková Z., Dmitrieva E. Structural changes in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry // Journal of Raman Spectroscopy. 2017. Vol. 48, № 9. P. 1229–1234.
  34. 34. Trchová M., Morávková Z., Bláha M., et al. Raman spectroscopy of polyaniline and oligoaniline thin films // Electrochimica Acta. 2014. Vol. 122. P. 28–38.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library