RAS Chemistry & Material ScienceФизикохимия поверхности и защита материалов Protection of Metals and Physical Chemistry of Surfaces

  • ISSN (Print) 0044-1856
  • ISSN (Online) 3034-6479

Влияние добавок аминокислот на свойства углеродного сорбента, модифицированного салициловой кислотой

PII
S0044185625010018-1
DOI
10.31857/S0044185625010018
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
3-10
Abstract
Физикохимия поверхности и защита материалов, Влияние добавок аминокислот на свойства углеродного сорбента, модифицированного салициловой кислотой
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Перевозкина М.Г. // Фундаментальные исследования. 2015. № 2. Т.8. С. 1681–1688.
  2. 2. Sorzabal-Bellido I., Diaz-Fernandez Y.A., Susarrey-Arce A. et al. ACS Appl. Bio Mater. V. 20192. P. 4801–4811.
  3. 3. Randjelović P., Veljković S., Stojiljković N. et al. // Acta Facultatis Medicae Naissensis. 2015. V. 32. № 4. Р. 259–265.
  4. 4. Cox P.G., Moons W.M., Russel F.G., van Ginneken C.A. // Pharmacol. Toxicol. 1991. V. 68. № 5. P. 322–328.
  5. 5. Kaur B., Singh P. // Bioorg. Chem. 2022. V. 121. P. 105663–105678.
  6. 6. Кияшев Д.К. // Вестник КазНМУ. 2014. № 4. С. 293–301.
  7. 7. Ерофеева Л.Н., Сучкина Д.А. // Медицина. 2019. Т. 7. № 4. С. 34–42.
  8. 8. Липатов В.А., Лазаренко С.В., Сотников К.А. и др. // Наука молодых. 2020. Т. 8. № 1. С. 45–52.
  9. 9. Li Y., Cai B., Zhang Z. et al. // Acta Biomater. 2021. V. 130. Р. 435–446.
  10. 10. Hu F., Sun T., Xie J. et al. // J. Mol. Struct. 2021. V. 1223. Р. 129237–12943.
  11. 11. Huang J., Wang G., Huang K. // Chem. Eng. J. 2011. V. 168. № 2. P. 715–721.
  12. 12. Zhang W., Chen J., Pan B., Zhang Q. // Adsorpt. Sci. Technol. 2005. V. 23. № 9. Р. 751–762.
  13. 13. Gao J., Jansen B., Cerli C. et al. // Eur. J. Soil Sci. 2017. V. 68. Р. 667–677.
  14. 14. Liu F., Chen J., Zhang Q. et al. // Chinese J. Polym. Sci. 2005. V. 23. № 4. Р. 373–378.
  15. 15. Chen Y., Qian Y., Ma J. et al. // Sci. Total Environ. 2022. V. 817. Р. 153081–153089.
  16. 16. Butyrskaya E.V., Zapryagaev S. A., Izmailova E. A. // Carbon. 2019. V. 143. P. 276–287.
  17. 17. Medina F., Aguiar M.B., Parolo M.E., Avena M.J. // J. Environ. Manage. 2021. V. 278. P. 111523–111532.
  18. 18. Anwar R., Koparir P., Qader I., Ahmed L. // Cumhuriyet Science J. 2021. V. 42. Р. 576–585.
  19. 19. McRae M.P. // J. Chiropr. Med. 2016. V. 15. № 3. Р.184–189.
  20. 20. Li S., Yang M., Jin R. et al. // Electrochim. Acta. 2020. V. 364. Р. 137290–137299.
  21. 21. de Araújo D.T., Ciuffi K.J., Nassar E.J. et al. // Appl. Surf. Sci. 2021. V. 4. Р. 100081-100089.
  22. 22. Wang Y., Ji W., Xu Y. et al. // Colloids Surf. A: Physicochem. Eng. 2021. V. 608. Р. 125557–1255678.
  23. 23. Li M., Li N., Qiu W. et al. // J. Colloid Interface Sci. 2022. V. 607. № 2. P. 1849–1863.
  24. 24. Turov V.V., Gun’ko V.M., Krupska T.V. et al. // Colloids Surf. A: Physicochem. Eng. 2021. V. 624. Р. 126844–126854.
  25. 25. Chai Z., Li C., Zhu Y. et al. // Int. J. Biol. Macromol. 2020. V. 165. P. 506–516.
  26. 26. Naushad M., Alqadami A.A., AlOthman Z.A. et al. // J. Mol. Liq. 2019. V. 293. Р. 111442–111450.
  27. 27. Li L., Zhang Q.L., Fan H.L. et al. // Wuji Cailiao Xuebao J. Inorg. Mater. 2016. V. 31. № 4. Р. 413–420.
  28. 28. Nouha S., Souad N.S., Abdelmottalab O. // J. Chil. Chem. Soc. 2019. V. 64. № 1. Р. 4352–4359.
  29. 29. Choi J., Shin W.S. // Minerals. 2020. V. 10. P. 898–914.
  30. 30. Alves C.C.O., Franca A.S., Oliveira L.S. // LWT – Food Sci. Technol. 2013. V. 51. № 1. P. 1–8.
  31. 31. Shukla D., Trout B.L. // J. Phys. Chem. B. 2010. V. 114. № 42. Р. 13426–13438.
  32. 32. Sousa H.R., Silva L.S., Sousa P.A.A. et al. // J. Mater. Res. Technol. 2019. V. 8. № 6. P. 5432–5442.
  33. 33. Georgin J., da Boit Martinello K., Franco D.S.P. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 1. P. 107006–107017.
  34. 34. Sedanova A.V., P’yanova L.G., Kornienko N.V. et al. // J. Mater. Sci. 2023. V. 58. P. 11469–11485.
  35. 35. Xiao G.Q., Li H., Xu M.C. // J. Appl. Polym. Sci. 2013. V. 127. Р. 3858–3863.
  36. 36. Gao J., Jansen B., Cerli C. et al. // Eur. J. Soil Sci. 2017. V. 68. Р. 667–677.
  37. 37. Li S., Huang L., Zhang H. et al. // Appl. Surf. Sci. 2021. V. 540. Р. 148386–148395.
  38. 38. Jahan N., Roy H., Reaz A.H. et al. // Case Stud. Chem. Environ. Eng. 2022. V. 6. Р. 100239–100249.
  39. 39. Hessien M. // Molecules. 2023. V. 28. P. 4526–4542.
  40. 40. He Y., Ni L., Gao Q. et al. // Molecules. 2023. V. 28. P. 3410–3425.
  41. 41. Liang C., Shi Q., Feng J. et al. // Nanomaterials. 2022. V. 12. № 11. P. 1814–1832.
  42. 42. Thang N.H., Khang D.S., Hai T.D. et al. // RSC Adv. 2021. V. 11. № 43. P. 26563–26570.
  43. 43. Guo X., Wei Q., Du B. et al. // Appl. Surf. Sci. 2013. V. 284. P. 862–869.
  44. 44. Adnan Omer M., Khan B. et al. // Water. 2022. V. 14. P. 4139–4153.
  45. 45. Athari M., Fattahi M., Khosravi-Nikou M. et al. // Sci. Rep. 2022. V. 12. P. 20415–20430.
  46. 46. Alkhabbas M., Al-Ma’abreh A.M., Edris G. et al. // Int. J. Environ. Res. Public Health. 2023. 20. P. 3280–3294.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library