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В данной статье с использованием метода нестационарного электролиза на поверхности нержа-
веющей стали марки Crofer 22 APU получены покрытия на основе кобальт-марганцевой шпинели 
Co2MnO4. Методами сканирующей электронной микроскопии и рентгеновской фотоэлектрон-
ной спектроскопии изучены микроструктура и химический состав поверхностного слоя покры-
тий. Установлено, что морфология поверхности носит мозаичный характер. Анализ валентного 
состояния поверхностных слоев покрытия показал, что его основными компонентами являются 
марганец (4+), кобальт (3+) и кислород (2–).
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ВВЕДЕНИЕ

Твердооксидные топливные элементы 
(ТОТЭ) относятся к  одним из  наиболее пер-
спективных систем преобразования энергии, 
преимуществами которых являются высокая 
эффективность и  экологичность [1]. Основной 
структурной единицей ТОТЭ является элек-
трохимическая ячейка, состоящая из  твердого 
электролита и  двух пористых электродов. Оди-
ночные элементы соединяются в  батареи ТОТЭ 
с использованием внутренних электрических со-
единений – токовых коллекторов, которые и яв-
ляются ключевыми компонентами, влияющими 
на долговременную стабильность батарей ТОТЭ 

[2]. Наиболее распространенным материалом для 
изготовления токовых коллекторов ТОТЭ следует 
считать ферритные нержавеющие стали (SUS430, 
AISI 430, Crofer 22 APU), при эксплуатации кото-
рых в интервале рабочих температур (600–850°C) 
происходит образование газообразных CrO3, 
CrO2(OH)2 и CrO2OH с последующим восстанов-
лением в  паровой фазе, что приводит к  образо-
ванию твердых фаз Cr2O3 и MnCr2O4, в дальней-
шем препятствующих реакции восстановления 
кислорода. Кроме того, сформировавшийся 
на поверхности слой из оксидов Cr2O3 и MnCr2O4 
образует диффузионный барьер, приводящий 
к  увеличению контактного сопротивления меж-
ду электродами и  токовыми коллекторами. Это 
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явление “отравления хромом” и является основ-
ной причиной снижения производительности  
ТОТЭ [3].

Одним из  наиболее эффективных методов 
решения этой проблемы является нанесение 
защитных покрытий на  поверхность токовых 
коллекторов [4]. Защитные покрытия токовых 
коллекторов ТОТЭ должны обладать высокой 
электропроводностью, стойкостью к окислению 
и  коэффициентом термического расширения 
(КТР), обеспечивающим минимальные омиче-
ские потери [5, 6]. Этим требованиям в высокой 
степени отвечают покрытия на основе соедине-
ний со  структурой шпинели. Токопроводящая 
шпинель может повысить стойкость к  высоко-
температурному окислению токовых коллекто-
ров, подавить испарение Cr и  обеспечить ста-
бильную работу ТОТЭ в  течение длительного 
времени при высокой температуре. Среди шпи-
нельных покрытий наиболее перспективными 
следует считать покрытия на основе кобальт-мар-
ганцевой шпинели из-за их высокой электропро-
водности, стойкости к  окислению и  оптималь-
ному значению КТР [7]. Так, авторами работы [7] 
было доказано, что покрытия на основе шпине-
ли Mn–Co–O позволяют эффективно повысить 
стойкость токовых коллекторов из нержавеющей 
стали к  окислению при высокой температуре. 
При этом кинетика окисления в условиях камеры 
ТОТЭ для таких покрытий определяется комби-
нацией диффузионно-контролируемого (пара-
болического) роста оксидного слоя и линейного 
закона испарения оксидных соединений. Было 
установлено, что увеличение массы образца ста-
ли с покрытием происходит в течение 375 часов 
(при испытании в течение 800 часов), а затем за-
медляется, что связано с образованием шпинели, 
препятствующей формированию Cr2O3. В работе 
[8] показано, что покрытия из  (Mn, Co)3O4, на-
несенные на  нержавеющую сталь марки Crofer 
22 APU, позволяют снизить скорость окисления 
примерно на порядок, а скорость испарения Cr – 
примерно в 4 раза в диапазоне рабочих темпера-
тур 800–850°С. Следует отметить, что наиболее 
часто для синтеза подобных покрытий на основе 
Co–Mn-шпинели используют химические ме-
тоды [9], которые обладают рядом недостатков, 
к наиболее существенным из которых можно от-
нести многостадийность процесса формирова-
ния покрытий и  необходимость использования 
высоких температур. В связи с этим видится пер-
спективным использовать электрохимические 
методы нанесения покрытий, отличающиеся 
простотой реализации, среди которых отдельный 

интерес представляет метод нестационарного 
электролиза. Использование метода нестаци-
онарного электролиза, основанного на  поля-
ризации переменным асимметричным током, 
открывает широкие возможности в  управлении 
структурой и  физико-химическими свойства-
ми наносимых покрытий. Поскольку сведения 
об  использовании данного метода для синтеза 
покрытий подобного рода в  литературе отсут-
ствуют, это и  определяет новизну проводимых 
исследований. В свою очередь, поскольку физи-
ко-химические свойства поверхности во многом 
определяют эксплуатационные свойства в  це-
лом, необходимо детальное исследование мор-
фологии и  химического состава наносимых по-
крытий.

Цель работы – синтез покрытий на основе ко-
бальт-марганцевой шпинели с  использованием 
переменного асимметричного тока и  исследова-
ние морфологии, структуры и валентного состоя-
ния элементов их поверхностных слоев. 

МЕТОДИКА ЭКСПЕРИМЕНТА

Электрохимической ячейкой для получения 
покрытий на  основе кобальт-марганцевой шпи-
нели служил стеклянный термостатированный 
электролизер емкостью 250 мл (ООО “Нома-
кон”), в  который помещали рабочий электрод 
и  противоэлектроды. В  качестве рабочего элек-
трода использовали нержавеющую сталь мар-
ки Crofer 22 APU, противоэлектродами служила 
нержавеющая сталь марки AISI 304. Растворы 
готовили из реактивов марки “х.ч.” на дистилли-
рованной воде. Процесс проводили при переме-
шивании раствора электролита с помощью маг-
нитной мешалки.

Для получения покрытий использовали пе-
ременный асимметричный синусоидальный ток 
промышленной частоты (50 Гц). Источником 
тока служило устройство, состоящее из двух ди-
одов, включенных параллельно и  проводящих 
ток в  разных направлениях через регулируе-
мые сопротивления. Средняя плотность за  пе-
риод катодного тока составила (jk) 0.45 А∙дм–2, 
анодного (ja) 0.7 А∙дм–2. Электролиз проводили 
при температуре 70°С, рН 3–4. Время электро-
лиза  – 50 мин. В  состав электролита входили 
следующие компоненты, г·л–1: нитрат кобаль-
та (Co(NO3)2·6H2O)  – 200; хлорид кобальта 
(CoCl2·6H2O) – 20; хлорид никеля (NiCl2·6H2O) – 
20; сульфат марганца (MnSO4·5H2O) – 1.5; бор-
ная кислота (H3BO3) – 30; алкилсульфат натрия 
(CnH2n+1OSO2ONa) – 1.
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Исследование морфологии и  элементно-
го состава покрытий осуществляли без допол-
нительной пробоподготовки с  использовани-
ем сканирующего электронного микроскопа 
SUPRA 50 (ЦКП ИФТТ РАН) с  сверхвысоким 
разрешением на  малых ускоряющих напряже-
ниях: 1.7 нм при 1 кВ, 3.5 нм при 200 В.

Для определения фазового состава разраба-
тываемых покрытий использовали рентгенов-
ский дифрактометр ДРОН-8Н, оснащенный 
параболическим зеркалом на  первичном пуч-
ке и  позиционно-чувствительным детектором 
Mythen 2R 1D (ЦКП “НАНОТЕХ” ИФПМ СО 
РАН).

Рентгеновские фотоэлектронные спектры 
(РФЭС) были получены на модернизированном 
рентгеноэлектронном спектрометре ЭС-2401 
с  использованием немонохроматизированно-
го рентгеновского излучения магниевого ано-
да (hν = 1253.6 эВ) (ЦКП “Центр физических 
и  физико-химических методов анализа, иссле-
дования свойств и  характеристик поверхности, 
наноструктур, материалов и изделий” УдмФИЦ 
УрО РАН).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА  
И ИХ ОБСУЖДЕНИЕ

Морфология поверхности покрытия на  ос-
нове Со–Mn-шпинели носит сетчатый харак-
тер, присущий оксидам переходных металлов, 
и состоит из отдельных фрагментов (см. рис. 1). 

Основными обнаруженными элементами 
покрытия по  данным рентгеноспектрального 
микроанализа (табл.  1) являются марганец, ко-
бальт, кислород, а также железо, углерод и хром 
в незначительных количествах.

На основании данных рентгенофазово-
го анализа (РФА) (рис.  2) было установлено, 
что два наблюдающихся при углах 2θ = 44.58° 

и 66.28° рефлекса относятся к фазе α-Fe, то есть, 
вероятно, к  металлу основы. При этом подъ-
ем фона в  диапазоне углов 2θ = 35–42°  может 
указывать на  присутствие рентгеноаморфной 
фазы. Наложение карточки кобальт-марган-
цевой шпинели (Co2MnO4) показывает соот-
ветствие углового положения основных линий 
данной фазы и вышеописанного подъема фона. 
Расчет соотношения фаз по корундовым числам 

100 мкм

Spectrum 2

Spectrum 1

Рис.  1. Микрофотография поверхности покрытия 
(а) и EDX спектры (б).

Таблица 1. Данные рентгеноспектрального микро
анализа

Элемент Мас. % Ат. %
C 1.25 2.95
O 37.18 65.99
Cr 0.88 0.48
Mn 34.24 17.70
Fe 5.04 2.56
Co 21.41 10.32
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Рис. 2. Рентгенограмма покрытия на основе Со–Mn-шпинели.
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показал наличие 29 мас. % железа, все осталь-
ное  – фаза шпинели с  кубической кристалли-
ческой решеткой; при этом важно отметить, что 
фаза Co2MnO4 обнаружена как преобладающая 
фаза в слое покрытия. 

Для подтверждения данных рентгенофазово-
го анализа проводили исследование валентного 
состояния элементов поверхностного слоя (до 
3 нм) методом РФЭС. Как видно, на  обзорном 
спектре присутствуют пики кобальта, марганца, 
кислорода, железа и углерода (рис. 3). Спектры 
отдельных элементов приведены на рис. 4.

Значение энергии связи максимума основно-
го пика Co (780.52 эВ) (рис. 4а) соответствует окис-
ленному кобальту, а наличие сателлита shake-up 
доказывает, что кобальт имеет зарядовое состоя-
ние 2+ [10]. Наличие высокого фона в  области 
645 эВ позволяет утверждать, что часть марганца 

CKVV
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* OKVV
Co

Fe2p

Mn2p
Ols

Cls
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Энергия связи, эВ
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Рис. 3. РФЭС-спектры покрытия.

Рис. 4. РФЭС-спектры: Co2p3/2 (а), Mn2p3/2 (б), Fe2p3/2 (в), С1s (г), О1s (д).
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находится в состоянии 2+ (рис. 4б). Основной же 
ярко выраженный интенсивный пик фотоэмис-
сии при 642 эВ может быть отнесен к марганцу 
в степени окисления 4+, то есть из рис. 4б вид-
но, что вклад марганца 4+ наиболее значителен. 
Спектр железа типичен для окисленного желе-
за, пик с  энергией связи 710 эВ соответствует  
Fe (2+), а  пик при 711.5 эВ  – железу в  состоя-
нии 3+ (рис.  4в), что может свидетельствовать 
о  взаимодействии наносимого покрытия с  ме-
таллом основы. Высокоэнергетические компо-
ненты спектра кислорода с  максимумами при  
530 и 532 эВ отвечают кислороду в связи Mn–O 
и  кислороду в  составе одинарных (C–O) угле-
род-кислородных групп соответственно [13]. 
Спектр углерода многокомпонентный (рис.  4г) 
и  соответствует адсорбированному углероду 
на поверхности покрытия, что можно объяснить 
углеводородным загрязнением с  Есв = 285 эВ 
[12]. С другой стороны, наличие углерода можно 
объяснить присутствием в  составе электролита 
для синтеза покрытий поверхностно-активного 
вещества (алкилсульфат натрия).

В целом же результаты РФЭС не противоречат 
данным РФА, а дополняют их.

ЗАКЛЮЧЕНИЕ

Исследована возможность синтеза покрытий 
со  структурой кобальт-марганцевой шпинели 
на  твердом носителе. Показано, что исполь-
зование метода нестационарного электролиза 
обеспечивает формирование Co–Mn-шпинели 
на  поверхности нержавеющей стали. Проведе-
но исследование морфологии и  элементного 
состава синтезированных покрытий, показано, 
что основными элементами являются марганец, 
кобальт и кислород. Установлено, что марганец 
в  поверхностном слое покрытия преимуще-
ственно находится в степени окисления 4+, не-
значительная часть марганца окислена до состо-
яния 2+. Валентное состояние кобальта 2+, а из 
спектра, характеризующего поведение кислоро-
да, можно сделать вывод об  образовании связи 
Mn–O. Это согласуется с  результатами РФА, 
согласно которым основной фазой полученных 
покрытий следует считать Co2MnO4.
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Таблица 2. Концентрации элементов (ат.%) в поверх-
ностном слое, обнаруженные методом РФЭС

Элемент С Co Mn O Fe
Концентрации элементов, ат.% 37.2 3.9 8.5 42.6 7.7




