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Проведены обобщающие сравнительные исследования по  изменению поверхност-
ных, физико-механических свойств биорезорбируемых нитей in vitro и  in vivo, реак-
ции тканей на  использование шовных материалов с  разными сроками биодеструк-
ции: сополимер лактида с  гликолидом (ПГЛ), полидоксанон (ПДО), сополимер 
гликолида и ε-капролактона (ПГК). Определена причина возникновения возможной воспали-
тельной реакции тканей. Процесс биодеструкции для всех нитей начинается с поверхности, со-
провождается “выщелачиванием” низкомолекулярных веществ, механизм биорезорбции явля-
ется фагоцитарным, сами нити рассматриваются биологическими тканями как инородные тела. 
Однако в зависимости от химического состава шовного материала несколько отличается мест-
ная реакция тканей. Так, в случае с ПГЛ наблюдается увеличение числа многоядерных гигант-
ских клеток Пирогова–Лангханса, фагоцитирующих частицы шовного материала, при исполь-
зовании нитей ПДО – преобладает увеличение числа лимфоцитов с кольцевидным ядром, как 
и в случае с ПГК-нитей. Реакция тканей зависит и от того, является ли шовный материал мо-
нонитью или плетеной. У мононитей явно виден ложемент, соединительнотканный “футляр”; 
у плетеных нитей – прорастание волокон соединительной тканью, образование гигантских мно-
гоядерных клеток, что может привести к образованию гранулем и “соединительных узелков”. 
Во всех вариантах биорезорбируемых нитей после полной потери прочности они превращаются 
в оксифильные неоднородные субстанции на гистологических срезах, что подтверждается ме-
тодом ДСК, отмечается аморфизация надмолекулярной структуры полимеров. На начальных 
стадиях биорезорбции шовных материалов механизм изменения надмолекулярной структуры 
полимеров in vivo и in vitro различен: как правило in vitro изменения проходят стадию рекристал-
лизации, in vivo  – постепенную аморфизацию. Поэтому объясним факт, что в  условиях био-
логических тканей прочность нити на разных сроках заживления раны может быть на 5–10% 
ниже, чем in vitrо, однако находится в пределах доверительных интервалов, что позволяет при 
необходимости заменять метод in vivo на in vitro до достижения остаточной прочности 50%. 
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ВВЕДЕНИЕ

С появлением на  российском рынке новых 
производителей шовных материалов возни-
кает необходимость оценки функциональных 
свойств материалов после наложения хирурги-
ческих швов в  процессе последующего их на-
хождения в тканях организма. 

В предыдущих работах [1, 2] нами были про-
ведены исследования в эксперименте in vivo и in 
vitro по сравнительной оценке рассасывающих-
ся шовных материалов среднего из  сополимера 
гликолида с  лактидом (ПГЛ) и  длительного со-
хранения прочности, состоящего из  полидиок-
санона (ПДО).

В случае ПДО-мононитей [2] тенденции 
трансформации структуры полимера in vivo и in 
vitro совпадают: происходит рекристаллизация 
надмолекулярной структуры за счет пребывания 
образцов в  процессе экспозиции при темпера-
туре выше температуры стеклования, а  также 
за  счет деструктированных фрагментов цепи, 
которые образуются в  результате “расщепле-
ния” карбонильной и эфирной групп сложноэ-
фирной группировки полимера. Мононить ПДО 
уже на  16-е сут экспозиции in vivo находится 
в соединительнотканной капсуле без признаков 
инвазии клеток, на 180-е сутки нить представля-
ет собой оксифильное неоднородное вещество 
с  участками разной интенсивности окрашива-
ния, структура мононити неоднородна в  пери-
ферийных участках. 

При исследовании плетеных нитей из  ПГЛ 
[1] было показано, что изменения в поведении 
хирургических нитей, приводящие к  сниже-
нию физико-механических свойств в  услови-
ях in vivo, связаны с  аморфизацией структуры 
сополимера в  объеме материала нити с  после-
дующим “вымыванием” низкомолекулярных 
веществ, в  условиях in vitro  – с  перестройкой 
надмолекулярной структуры и  возникновени-
ем более жестких ее сегментов, и, как и в слу-
чае in vivo, с поверхностным гидролизом. Мор-
фологическая картина реакции биологических 
тканей на  плетеные нити связана с  местным 
хроническим воспалением, реакцией тканей 
на  инородное тело и  “вымыванием” низко-
молекулярных веществ с  поверхности нитей, 
в  результате чего образуются гигантские клет-
ки Пирогова–Лангханса как ответная реакция 
иммунной системы. Подобная клеточная ре-
акция способствует фагоцитированию частиц 
нити (на гистологических срезах зафиксирован 
процесс фагоцитоза частицы нити гигантской 

многоядерной клеткой). При поглощении 
большого количества этих частиц гигантские 
клетки Пирогова–Лангханса погибают, что 
приводит к еще большему накоплению данных 
клеток в  месте локализации нити, в  результа-
те чего образуются гранулемы. Был выявлен 
концентрический рост волокон соединитель-
ной ткани как вокруг самой плетеной нити, так 
и вокруг составляющих ее элементарных нитей. 
Наблюдаемый процесс возможен и  как исход 
хронического воспаления в  виде образования 
соединительнотканных узелков на месте гибели 
гигантских клеток.

Одним из  начальных исследований нитей 
на основе ПДО и ПГЛ является оценка измене-
ния их физико-механических свойств методом 
in vitro [3]. В экспериментах было показано, что 
прочностные показатели in vivo и  in vitro либо 
совпадали, либо находились в пределах довери-
тельных интервалов, что аргументирует прове-
дение первого этапа исследований с  помощью 
in vitro методов. Однако следует отметить, что 
средние значения прочности in vivo находились 
в  пределах доверительных интервалов несколь-
ко ниже значений in vitro на тех же сроках экспе-
римента, что может свидетельствовать о  вкладе 
ферментативного гидролиза в  процесс биоде-
струкции. В  работах [1, 2] было показано, что 
значения прочности нитей на  разных сроках 
экспозиции как in vivo, так и  in vitro могут зна-
чительно отличаться у  разных производителей, 
что подтверждает необходимость и целесообраз-
ность оценки изменения свойств рассасываю-
щихся шовных материалов как при входном, так 
и периодическом контроле в процессе их произ-
водства.

Для ушивания быстро заживающих тканей 
(до 1 недели) широко используются и хирургиче-
ские нити короткого срока сохранения прочно-
сти, в частности шовный материал из сополиме-
ра гликолида и  ε-капролактона в  соотношении 
75:25 (ПГК), который отличается мягкостью, 
податливостью и  надежностью узлов. По дан-
ным литературы ПГК-мононить сохраняет 
50–60% от  первоначальной прочности к  7 сут, 
20–30% к  14 суткам и  полностью теряет проч-
ность к  21 дню. Полная абсорбция происходит 
через 90–120 суток [4–6].

Цель данной работы состояла в сравнитель-
ном исследовании поведения нитей короткого 
срока рассасывания на  примере ПГК с  осталь-
ными биорезорбируемыми шовными матери-
алами в  эксперименте in vivo на  лабораторных 
животных и модельной среде in vitro.
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МАТЕРИАЛЫ И МЕТОДЫ

В качестве объекта исследования была ис-
пользована хирургическая синтетическая расса-
сывающаяся ПГК-мононить метрического раз-
мера 4 (диаметр 0.46 мм).

Изменение свойств образцов in vitro изучали 
после экспозиции в  фосфатном буферном рас-
творе (рН = 7.4) при температуре 37°C [3]. Для 
обеспечения постоянного рН буферные раство-
ры обновляли 1 раз в неделю и контролировали 
с помощью рН-метра StarterST3 100-F (Ohaus In-
struments, Китай). Образцы нитей, помещенные 
в буферный раствор, выдерживали в термостате 
BINDER типа BD 53 (BinderGmbН, Германия).

Исследование in vivo выполняли на  белых 
крысах самцах линии “Вистар” (Wistar) массой 
250–400 г. Все манипуляции осуществляли в со-
ответствии с  правилами гуманного обращения 
с  лабораторными животными [7]. Животных 
содержали в стандартных условиях вивария с от-
крытым доступом к еде и воде. Образцы имплан-
тировали подкожно в области спины животных, 
с соблюдением правил асептики и антисептики, 
после наркотизации ингаляционным наркозом 
“Севоран”. Вывод животных из  эксперимен-
та и  иссечение образцов нитей осуществляли 
на разных сроках вплоть до 29 сут. Исследование 
образцов на более поздних сроках in vivo не про-
водилось в связи с затруднением эксплантации 
образцов. 

Для проведения стандартных гистологи-
ческих исследований образцы кожи с  нитью 
помещали в  10%-ный забуференный раствор 
формалина, выполняли парафиновую заливку 
и  окрашивали срезы гематоксилином и  эози-
ном. Толщина срезов составляла 6 мкм. Оценку 
гистологической картины выполняли с  помо-
щью светового микроскопа Axio A1.0 (CarlZeiss, 
Германия) при увеличении ×100 и ×630.

После экспозиции образцов in vivo и  in vitro 
выполняли следующие исследования:

– для оценки изменения массы и  диаметра 
нитей извлеченные образцы промывали дис-
тиллированной водой, сушили суховоздушным 
способом до  постоянной массы и  взвешивали 
на  электронных аналитических весах SARTO-
RIUS модель R 200D (Sartorius Göttingen Gmbh, 
Германия) с точностью до 0.0001 г. Диаметр ни-
тей измеряли с  помощью рабочего инструмен-
тального микроскопа ЛабоМетри-1 (ООО НПФ 
“Фокус”, Россия);

– определение прочностных свойств осу-
ществляли на  разрывной испытательной 

машине EZTest модификации EZ-LX-0.5 (Shi-
madzu, Япония). Расстояние между захватами 
разрывной машины составляло 25 мм, скорость 
перемещения подвижного зажима – 50 мм/мин. 
Изменение прочностных свойств оценивали 
на  каждом сроке экспозиции in vivo и  in vitro 
в процентах по отношению к исходной разрыв-
ной нагрузке нитей;

– теплофизические свойства исследовали 
методом дифференциальной сканирующей ка-
лориметрии (ДСК). Термограммы ДСК были 
получены с  помощью прибора DSC214 Polyma 
(NETZSCH, Германия) в атмосфере азота. Мас-
са образцов составляла 5–6 мг. Образцы были 
запечатаны в алюминиевые тигли. Для каждого 
образца проводили два сканирования в динами-
ческом режиме при скорости повышения темпе-
ратуры (ʋ ± 10) К/мин в  интервале температур 
от −70°С до +250°С. Первое сканирование про-
водили для устранения термической предысто-
рии образца;

– исследования структурных изменений по-
верхности при экспозиции образцов in vivo и  in 
vitro проводили методом нарушенного полного 
внутреннего отражения (НПВО-спектроско-
пии) в  области волновых чисел 7800–350 см–1 

на  ИК-фурье-спектрометре IRSpirit (Shimadzu, 
Япония). Интерпретацию спектров выполня-
ли в  соответствии с  литературными данными 
[8, 9] в  области волновых чисел, приведенных 
в табл. 1. За внутренний стандарт приняты коле-
бания –СН2-групп;

– оценку изменений в спектрах поглощения 
проводили по  отношению оптических плот-
ностей D′/D725, где D′  – оптическая плотность 
при определенной длине волны, D725 – оптиче-
ская плотность, характерная для маятниковых 
колебаний метиленовой группы –СН2–;

– исследование изменений физической 
структуры поверхности ПГК-мононитей по-
сле экспозиции in vivo и  in vitro проводили 
с  помощью электронного сканирующего ми-
кроскопа с полевым катодом Quanta 650 FEG 
(FEI, ThermoFisherScientific, США) с  исполь-
зованием детектора вторичных электронов 
в условиях высокого вакуума при ускоряющем 
напряжении 2 кВ. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Производители ПГК-мононитей обычно де-
кларируют остаточную прочность нити после 
наложения швов, соответствующую 50% перво-
начальной прочности через 7 сут и 20% к 14 сут.
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Результаты определения прочностных харак-
теристик ПГК-мононитей после экспозиции in 
vivo и in vitro приведены на рис. 1.

Предыдущие результаты исследований шов-
ных материалов из ПГЛ [1], ПДО [2] подтверди-
ли отсутствие значительной разницы в значени-
ях прочностных характеристик in vivo и  in vitro. 
Следует подчеркнуть, что в  случае ПГЛ были 
использованы плетеные нити, и незначительная 
разница может быть объяснена обрастанием от-
дельных нитей соединительной тканью, приво-
дящая к упрочению нити в целом. Проведенные 
исследования на тот момент позволили сделать 
вывод, что на  ранних сроках (до достижения 
остаточной прочности нитей 50%) применить 
замену испытаний in vivo на in vitro. 

Аналогичные результаты были получены и  в 
данном исследовании: прочность ПГК-мононити 
in vivo несколько ниже, чем значения in vitro, од-
нако это свидетельствует о  соответствии показа-
телям, которые декларирует производитель (оста-
точная прочность – 50 и 20% на сроках 7 и 14 сут 
соответственно), обеспечивающим адекватное 
поддержание ушитых ран быстро заживающих 
слизистых, серозных и паренхичматозных тканей. 

Абсорбцию воды ПГК-мононитями оцени-
вали по изменению массы образцов в процессе 
экспозиции in vivo и in vitro. Результаты приведе-
ны на рис. 2.

Измерить массу ПГК-мононитей при ис-
пытаниях in vivo удается только на  сроках до  18 
сут в  связи с  затруднением извлечения образцов 

0 2 4 6 8 10 12 14 16 18 20
0

10
20
30
40
50
60
70
80
90

100
110

 in vitro
 in vivo

Р 
от

н,
 %

Время экспозиии, сутки

Рис. 1. Изменение разрывной нагрузки образцов ПГК 
в зависимости от времени экспозиции in vivo и in vitro.
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Рис.  2. Изменение массы ПГК-мононитей в  про-
цессе экспозиции in vivo и in vitro.

Таблица 1. Типы и диапазоны поглощения использованных колебаний для описания ИК НПВО-спектров 

Типы колебаний Волновое число,  
ν, см–1

1 Валентные колебания ОН группы (водородные связи) 3600–3200

2 Валентные колебания связи –С = О 1750–1730

3 Область сопряженных двойных связей 1654

4 Валентные колебания –COO–, карбоксилат 1610–1550

5 Деформационные колебания –СН
2
–СО– 1458–1400

7 Валентные колебания –С–О–С– 1185–1090

8 Маятниковое колебание –СН2– 725–700

9 Колебания группы –О–С–О– 1200–1040

10 Деформационные колебания в первичных и вторичных аминах 1580–1490
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из соединительно-тканной капсулы, которая оста-
валась практически неизменной. Дальнейшее на-
блюдение за деградацией нитей in vivo было про-
ведено гистологическим методом. Извлекаемые 
нити имели уменьшенную длину, фрагментации 
нити на  части, как в  случае in vitro (см.  рис.  3а), 
не наблюдалось, внешний вид был схож с плотной 
бесцветной гелеобразной субстанцией. 

Были получены аналогичные результаты 
по  изменению массы in vitro на  сроках до  18 сут, 
после чего наблюдается уменьшение массы обра-
зов. Разрушение происходит за счет фрагментации 
нити на малые отрезки (см. рис. 3а). Полная поте-
ря массы ПГК-мононитей (на 99.5%) происходит 
к 70 суткам in vitro, оставшиеся 0.5% массы нити 
наблюдаются в виде следов на фильтровальной бу-
маге (см. рис. 3б). Диаметр нитей при экспозиции 
in vivo и in vitro был определен на сроках до 20 сут, 
в течение которых изменение составило около 2% 
(см. рис. 4).

Исследования теплофизических свойств 
образцов ПГК-мононитей на  разных сроках 
экспозиции in vivo и in vitro методом дифферен-
циальной сканирующей калориметрии дали сле-
дующие результаты: 

– на  термограмме исходного образца ПГК 
(рис.  5) наблюдается эндотермический пик 
плавления в области температур (160–210)°С;

– на термограммах образцов после экспози-
ции in vivo и  in vitro (рис. 6) наблюдаются эндо-
термические пики плавления. Процесс плавле-
ния в случае образцов после экспозиции in vitro 
происходит в  более широком диапазоне тем-
ператур, чем в образцах в эксперименте in vivo. 
У  образцов ПГК in vitro (рис.  6в, г) отмечается 
наличие характерной для процесса стеклования 
“ступеньки” и  узкого экзотермического пика, 
относящегося к процессу кристаллизации амор-
фной части материала. При этом на термограм-
мах образцов после экспозиции in vivo (рис. 7а, б) 
отсутствует переход стеклования и пик кристал-
лизации, что свидетельствует о различии в меха-
низме деструкции образцов после экспозиции 
in vivo и  in vitro, как и в случае сополимера лак-
тида с гликолидом [1].

Значения тепловых эффектов, обнаружен-
ных на термограммах (рис. 5 и 6), представлены 
в табл. 2.

Как видно из приведенных данных, с увеличе-
нием времени экспозиции in vitro у образцов ПГК 
наблюдается снижение температур стеклования, 
кристаллизации и  плавления, при этом энталь-
пия кристаллизации и плавления увеличиваются. 
Данные изменения могут быть связаны с увели-
чением аморфной части сополимера. Такое про-
исходит как за  счет деструкции основной цепи, 
ее дальнейшей кристаллизации, так и  за счет 
реализации возможности кристаллизации амор-
фной части, что может иметь место вследствие 
увеличения подвижности макроцепей в условиях 
набухшего состояния полимера и протекания ре-
лаксационных процессов после технологическо-
го процесса ориентации при производстве нитей. 

Поведение сополимера ПГК in vivo схоже с из-
менениями, обнаруженными ранее на  примере 
сополимера лактида с гликолидом [1], а именно 
с  изменением теплофизических характеристик, 
связанным с аморфизацией структуры полимера 
в объеме, которая подтверждена гистологически 
по изменению степени окрашивания. 

Изменения химической структуры поверх-
ности образцов ПГК до  и  после экспозиции in 
vivo и in vitro исследовали методом НПВО-спек-
троскопии (см. рис. 7).

Рис. 3. Абсорбция ПГК мононитей in vitro: а – фраг-
ментация нитей на  части через 40 дней; б  – следы 
нити после 70 суток.
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Рис. 4. Диаметр ПГК мононити после экспозиции 
in vitro и in vivo.
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Рис. 6. Термограммы ДСК образцов ПГК-мононитей: а – 11 суток in vivo; б – 18 суток in vivo; в – 11 суток in vitro; 
г – 18 суток in vitro.

Таблица 2. Теплофизические характеристики образцов ПГК в зависимости от сроков экспозиции in vivo и in vitro

Сроки 
экспозиции, 

сутки

Т
ст

, °С Т
кр

, °С Энтальпия
 кристаллизации, Дж/г Т

пл
, °С Энтальпия 

плавления, Дж/г

in vivo in vitro in vivo in vitro in vivo in vitro in vivo in vitro in vivo in vitro

исходный – – – 203 ± 3 37 ± 1

11 – 5 ± 2 – 66 ± 2 – 32 ± 2 195 ± 1 192 ± 2 43 ± 3 49 ± 2

18 – 3 ± 1 – 64 ± 1 – 38 ± 1 186 ± 2 180 ± 2 49 ± 2 57 ± 1
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Рис. 7. ИК-спектры ПГК-мононитей: а – исходного образца, б – 11 сут in vivo; в – 11 сут in vitro; г –18 сут in vivo; 
д – 18 сут in vitro.
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В процессе экспозиции in vivo и  in vitro 
не  возникают полосы поглощения, характер-
ные для полиенов (области сопряженных двой-
ных связей), карбоксилат-анионов, которые 
были обнаружены ранее [1, 2], не имело смысла 
и рассматривать область 3200–3600 см–1. Изме-
нения состояли в увеличении содержания групп 
–O–C–O–: отношение оптической плотности 
к  внутреннему стандарту в  условиях in vivo со-
ставило 12.4 ± 0.6; в условиях in vitro – 5.3 ± 0.3; 
в исходном образце – 4.3 ± 0.2, что может сви-
детельствовать об  увеличенной возможности 
деструкции макроцепей в  условиях in vivo. От-
ношение оптической плотности валентных ко-
лебаний карбонильной группы в  условиях in 
vivo уменьшилось по  отношению к  исходному 
образцу в  1.7 раза, а  наличие поглощения при 
1589 см–1 (колебания вторичных аминов) под-
тверждает возможность протекания механиз-
ма, рассмотренного ранее [1, 2], о расщеплении 
С = О связи и  одновременным взаимодействи-
ем с  окружающими нить и  присутствующими 
в биологических тканях белками. 

Таким образом, в случаях биорезорбируемых 
нитей, вне зависимости от химического состава 
конкретной нити, происходит процесс образо-
вания и  “вымывания” низкомолекулярных ве-
ществ с  поверхности полимерных материалов 
при сохранении молекулярной массы в объеме, 
т.е. биодеградация происходит в  слое, диффу-
зионно доступном для жидкой окружающей 
среды. Такой процесс приводит к  биоэрозии 
поверхности нити, появлению на ней неровно-
стей, впадин, трещин, наличие которых было 
подтверждено методом сканирующей электрон-
ной микроскопии и гистологически. 

Полученные микрофотографии представ-
лены на  рис.  8. На микрофотографиях СЭМ 
исходных образцов ПГК (рис.  8а) видно, что 
поверхность мононити гладкая, без явных по-
вреждений. На снимках образца после 11 и  18 
суток in vitro изменений поверхности не наблю-
дается (рис. 8б, в). На 18 сутки in vivo на поверх-
ности образца появились заметные изменения 
в виде поперечных трещин (рис. 8д, е).

Гистологические исследования окружающих 
ПГК-мононити тканей были выполнены на сро-
ках от 7 до 29 сут. Результаты исследований пред-
ставлены на  рис.  9–12. На 7 сут in vivo (рис.  9) 
было выявлено формирование равномерной 
плотной соединительной ткани вокруг ложе-
мента нити. Перифокально заметно диффузное 
скопление лимфоцитов, жировая ткань хорошо 
сформирована. При более крупном увеличении 

(рис. 9б) заметны кровеносные капилляры уме-
ренного наполнения. 

На 11 сут экспозиции in vivo (рис. 10) значи-
тельно снизилась лимфоидно-клеточная реак-
ция. В  окружающих тканях выявлены единич-
ные эозинофилы, в  кровеносных капиллярах, 
наряду с эритроцитами единично присутствуют 
нейтрофилы (рис. 10б). В полости соединитель-
нотканного канала удалось визуализировать 
структуру нити (рис.  10а), что свидетельствует 
о ее “размягчении” к данному сроку экспозиции 
в  тканях, что подтверждается появлением про-
дольных деформаций при общем сохранении 
прочности (гистотехнически нить все же сложно 
сохранить в ложементе).

На 18 сут in vivo (рис. 11) в окружающих тканях 
не  выявили каких-либо отклонений со  стороны 

300 мкм

(а) (б)

(в) (г)

(д) (е)

200 мкм

200 мкм

200 мкм

200 мкм

Рис.  8. Микрофотографии СЭМ образца ПГК:  
а – исходный (ув. 100×); б – 11 суток in vitro, ув. 500×;  
в – 18 суток in vitro ув. 500×; г – 11 суток in vivo, ув. 500×;  
д – 18 суток in vivo, ув. 500×; е – микрофотография 
образца ПГК, 18 суток in vivo, ув. 500×.
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гистоархитектоники окружающих тканей. Соеди-
нительнотканный ход сохранял свою целостность, 
в  ложементе выявлен фрагмент мононити, в  его 
структуре визуализируются как продольные, так 
и поперечные дефекты, срез нити лоцируется в ло-
жементе более ровно (по сравнению с 11 сутками 
экспозиции), заметна адгезия окружающих тканей 

к поверхности нити, что подтверждает усиление де-
формации и размягчение структуры нити к 18 сут.

К 29 дню эксперимента было выявлено значи-
тельное нарушение структуры нити, в ложементе 
определялись отдельные фрагменты с различны-
ми поверхностными повреждениями (выемки) 
(рис.  12). К  этому сроку нить сохраняла свою 
прозрачность и  бесцветность. В  окружающих 
тканях выявлены лимфоциты с  базофильным, 
кольцевидным ядром и  оксифильной зернисто-
стью внутри, что может свидетельствовать о мест-
ной клеточной интоксикации. Следует отметить, 
что единичное появление лимфоцитов с кольце-
видным ядром у  лабораторных крыс относится 
к  физиологической норме данного вида живот-
ных. В  нашей работе мы  наблюдали скопление 
12 ± 0.3 клеток в  одном поле зрения при увели-
чении в ×630 и развитие оксифильности тканей, 
что может свидетельствовать о нарушении кисло-
родного обмена в клетках, однако в окружающих 
тканях не выявлено признаков обширного токси-
ческого воздействия.

Рис. 12. Подкожная клетчатка крысы, 29 день in vivo: а – ложемент нити и окружающие ткани; б – фрагмент нити; 
в – клетки с кольцевидным ядром. Участки нити показаны звездочкой. Гематоксилин и эозин, увеличение ×100 (а) 
и ×630 (б).

(а) (б)

Рис. 9. Подкожная клетчатка крысы, 7 день in vivo: 
а – ложемент нити и окружающие ткани; б – лим-
фоидноклеточная реакция. Гематоксилин и  эозин, 
увеличение ×100 (а) и ×630 (б).

(а) (б)

Рис. 10. Подкожная клетчатка крысы, 11 день экс-
позиции нити: а – ложемент нити и  окружающие 
ткани (звездочкой показана нить); б – наличие ней-
трофилов в просвете капилляров. Гематоксилин 
и эозин, увеличение ×100 (а) и ×630 (б).

Рис. 11. Подкожная клетчатка крысы, 18 день экс-
позиции нити: а – ложемент нити и окружающие 
ткани (звездочкой показана нить, стрелкой – соеди-
нительная ткань, приросшая к нити); б – окружаю-
щие ткани. Гематоксилин и эозин, увеличение ×100.

(а) (б)(а)

(а) (б) (в)(а) (б)
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ВЫВОДЫ

В результате гистологических исследова-
ний удалось установить, что к 11 суткам экспе-
римента in vivo ПГК-нить приобретает первые 
поверхностные механические дефекты (выем-
ки), что способствует началу прирастания кле-
ток к поверхности нити. При этом нить в ложе-
менте выглядит полигональным образцом, что 
подтверждает слабую связь полимера с  окру-
жающими тканями и  обуславливает трудности 
гистотехнической подготовки в силу сохраняю-
щейся прочности самого полимера.

Усиление деформации поверхности моно-
нити происходит на  18 сутки in vivo, что обес-
печивает клеткам возможность “зацепиться” 
за полимер, сохранение его прозрачности свиде-
тельствует об  отсутствии пропитывания толщи 
нити тканевыми жидкостями, даже к 29 суткам 
экспозиции.

Опираясь на  ранее выполненные исследо-
вания [1, 2], можно констатировать, что в зави-
симости от  химического состава шовного ма-
териала меняется местная реакция тканей. Так, 
в случае с ПГЛ [1] наблюдается увеличение чис-
ла многоядерных гигантских клеток Пирогова–
Лангханса, фагоцитирующих частицы шовного 
материала, при использовании нитей ПДО [2] – 
увеличение числа лимфоцитов с кольцевидным 
ядром, как и в случае с ПГК-нитей.

Реакция тканей зависит не только от химиче-
ского состава шовного материала, но и от того, яв-
ляется ли он мононитью или плетеным. В случае 
мононитей явно виден ложемент, соединитель-
нотканный “футляр”, в случае плетеных нитей – 
прорастание волокон соединительной тканью, об-
разование гигантских многоядерных клеток, что 
может привести к  образованию гранулем и  “со-
единительных узелков”. Процесс биодеструкции 
для всех нитей разного срока рассасывания сопро-
вождается “выщелачиванием” низкомолекуляр-
ных веществ с поверхности полимеров. В любом 
случае механизм биорезорбции является фагоци-
тарным, а сами нити рассматриваются биологиче-
скими тканями как инородные тела.

Во всех случаях биорезорбируемых нитей 
на гистологических срезах после полной потери 
прочности они превращаются в  оксифильные 
неоднородные субстанции, что подтверждается 
и методом ДСК (аморфизация структуры поли-
меров после полной потери прочности). 

На начальных стадиях биорезорбции шовных 
материалов механизм изменения надмолекуляр-
ной структуры полимеров in vivo и in vitro различен: 

как правило in vitro изменения проходят стадию 
рекристаллизации, in vivo  – постепенную амор-
физацию. Поэтому объясним факт, что в условиях 
биологических тканей прочность нити на разных 
сроках заживления раны может быть на  5–10% 
ниже, чем in vitrо, однако находится в пределах до-
верительных интервалов, что позволяет при необ-
ходимости заменять метод in vivo на in vitro до до-
стижения остаточной прочности 50%. 

 Биорезорбция нитей in vivo и абсорбция in vitro 
начинаются после полной потери прочности. 
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