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1. ВВЕДЕНИЕ

Дальнейшее развитие микро- и  наноэлек-
троники во  многом связано с  разработкой 
более емких, быстродействующих, энергоне-
зависимых и  надежных устройств для записи, 
обработки и  хранения информации. В  этой 
связи новые перспективы открывают мемри-
сторы – простые и технологичные двухполюс-
ные устройства, электрическое сопротивление 
которых, в отличие от существующих, изменя-
ется в  зависимости от  протекшего через него 
заряда и сохраняется в течение достаточно дли-
тельного срока [1–6]. 

В последние годы был предложен ряд аль-
тернативных материалов для использования 
в качестве активного слоя мемристора. Можно 

отметить эффекты переключения в  2-мерных 
и  3-мерных ансамблях металл-оксидных на-
ночастиц, а  также 3-мерных металл-оксидных 
композитах [2–6]. Особо перспективными мо-
гут оказаться мемристоры на  основе планар-
ных ансамблей консолидированных и контак-
тирующих между собой наночастиц частично 
окисленного металла [6]. Получаемые вакуум-
ным напылением и  последующим доокисле-
нием такие металл-оксидные материалы часто 
представляют собой технологичные и  доста-
точно дешевые в  производстве металл-оксид-
ные нанокомпозиты с  мелкозернистой струк-
турой, наночастицы которых обладают целым 
набором оксидных фаз. Кислород при их экс-
плуатации в атмосферных условиях может до-
статочно легко диффундировать нормально 
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к поверхности по границам зерен в глубь плен-
ки композита. В  результате именно на  грани-
цах зерен преимущественно формируется ок-
сидная фаза. 

Очевидно, если через такую пленку про-
текает электрический ток, металл-оксидный 
нанокомпозит работает как коллектив по-
следовательно-параллельных МДМ- и/или 
МОМ-элементов, обладающих мемристорны-
ми эффектами. При этом вольт-амперные ха-
рактеристики (ВАХ) всего 3-мерного ансамбля 
могут быть также нелинейными, обладающими 
выраженными мемристорными свойствами ре-
зистивного переключения всего ансамбля как 
целого [6].

Несмотря на  значительные достижения 
в  области синтеза и  контроля металлических 
и  металл-оксидных нанокомпозитов, мето-
ды диагностики объемного строения таких 
наноструктур разрабатывались в  недостаточ-
ной степени. Вместе с тем становится все более 
очевидным, что формирование наноструктур 
на  разных стадиях окисления металлов и  их 
наночастиц  – скорее правило, чем исключе-
ние [8]. В этом отношении современные мето-
ды реконструктивной оптической томографии 
с  нанозондовым контролем участка анали-
зируемой поверхности являются достаточно 
удачной альтернативой, позволяющей прямое 
in  situ исследование объемного строения как 
ансамблей, так и индивидуальных наночастиц 
[9,  10]. Особый интерес представляет комби-
нирование взаимодополняющих методов фи-
зико-химического контроля под управлением 
интеллектуальных информационных систем 
(ИИС) [11,  12], сочетающих как структур-
но-морфологические, так и  спектральные ме-
тоды in situ микрозондового контроля при кон-
тролируемом и/или непрерывном изменении 
температуры, состава атмосферы, наложении 
потенциала и т.д. 

Ранее получил развитие метод эллипсоме-
трической спектротомографии [13], позволя-
ющий восстановить внутреннее строение по-
верхностного слоя по  данным спектральных 
эллипсометрических измерений с использова-
нием устойчивых алгоритмов решения обрат-
ных задач [16, 17]. Данный метод по использу-
емым оптимизационным алгоритмам близок 
к интеллектуальным информационным техно-
логиям восстановления полной информации 
о  внутреннем строении объекта по  ограни-
ченному набору проекций. В качестве таковых 
обычно выступают различные направления 

просвечивающего объект и  отраженного зон-
дирующего излучения [14, 15]. В спектральной 
томографии для исследования внутреннего 
строения слоя варьируют длину волны излу-
чения. В ряде случаев это позволяет повысить 
пространственное разрешение внутреннего 
строения неоднородного слоя до единиц нм. 

В данной работе рассмотрены методиче-
ские принципы эллипсометрической спектро-
томографии для неразрушающего контроля 
структуры и  состава многослойных пленок 
и  металл-оксидных нанокомпозитов, исполь-
зуемых в  планарных нанотехнологиях энерго-
независимой памяти. 

2. АЛГОРИТМЫ РЕКОНСТРУКЦИИ

2.1. Многослойные пленки

Основным методом рефлектометрических 
исследований неоднородных пленок являет-
ся их моделирование системой N-однородных 
фазовых слоев (см.  рис. 1) с  неизвестными 
толщинами d1, d2,...,dN [18, 19]. Определив все 
возможные фазы (например, по  диграммам 
состояний материалов, составляющих неодно-
родную пленку), далее можно найти объемное 
содержание каждой фазы или толщину каждо-
го фазового слоя. Это требует набора априорно 
известных оптических параметров (комплекс-
ных показателей преломления), составляющих 
неоднородный слой фаз. 
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1
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Рис. 1. Оптическая модель многослойной структу-
ры: a – окружающая среда, s – подложка (металл), 
m  – общее количество подслоев, dj  – толщина j-го 
подслоя, Nj – комплексный показатель преломления 
j-го подслоя.
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Для этого для каждой длины волны λ λ1.... N  
можно записать основное уравнение рефлекто-
метрии [13, 18]: 
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,

(1)

где G(λl) – энергетические коэффициенты отра-
жения поверхности со слоем, λi  – i-я длина вол-
ны, nj k( )λ  – известный показатель преломления 
j-го фазового слоя на длине волны λk , Y – из-
вестная функциональная зависимость (основ-
ное уравнение рефлектометрии). Если об опти-
ческих параметрах слоя, т.е. о  функциях nj k( )λ  
возможны априорные предположения, то  си-
стему (1) можно решить численно относительно 
толщин d1, d2,...,dN и  таким образом идентифи-
цировать общую толщину:

	 D d d dN� � � �1 2 ... . 	 (2)

Система уравнений (1) является классиче-
ской обратной задачей. На основе регуляризу-
ющих алгоритмов решения некорректных за-
дач [14–17] ее можно “устойчиво” решать даже 
при большом числе уравнений. Для получения 
устойчивых решений можно воспользоваться 
методом квазирешений [17]. При этом для чис-
ленного определения всех dj  из измеренных зна-
чений G(λi) первоначально исходя из основного 
уравнения рефлектометрии [18], записанного 
для исследуемой поверхностной системы на ос-
новании выбранной модели с  N-неизвестными 
параметрами dj, строится функционал

	 F d d d G d d d Gj N j j N j� � �, , ,..., ( , , ,..., ) ( )exp1 2 1 2

2� � � ��� ��	
	F d d d G d d d Gj N j j N j� � �, , ,..., ( , , ,..., ) ( )exp1 2 1 2

2� � � ��� �� ,	 (3)

где G d d dj j N( , , ,..., )λ 1 2   – модельная функция, 
определенная из  вышеупомянутого основ-
ного уравнения рефлектометрии [13, 18, 19]; 
G jexp ( )λ   – экспериментально определенные 
на  разных длинах волн λi  энергетические ко-
эффициенты отражения. Если в  данном урав-
нении все неизвестные параметры соответству-
ют их действительным значениям, то F( )λ = 0. 
Далее строится суммарная функция отклонения 
по всему оптическому спектру: 

	 S d d d FN j
j

N

( , ,..., ) ( )1 2
1

=
=

∑ λ .	 (4)

Далее производится минимизация получив-
шегося функционала по  d d dN1 2, ,...,  как по пара-
метрам. Соответствующие этому абсолютному 
минимуму получившиеся значения параметров 
d d dN1 2, ,...,  соответствуют наилучшему прибли-
жению принятой модели к реальной контроли-
руемой многослойной системе.

В эллипсометрии на практике обычно изме-
ряются эллипсометрические параметры ∆  и  ψ, 
связанные с r следующим соотношением [18]:

	
r
r

ip

s

� tg� exp( )� ,	 (5)

где rp и rs – экспериментально измеряемые компо-
ненты амплитудного коэффициента отражения r, 
поляризованные в плоскости падения и перпен-
дикулярно плоскости падения света на образец1. 
Таким образом, c учетом уравнения (1) получает-
ся система уравнений для каждой длины волны. 
Если число N настраиваемых монохроматором 
эллипсометра длин волн больше или равно числу 
слоев, из данной системы уравнений с использо-
ванием соответствующих устойчивых алгоритмов 
можно для определить ( , ,..., )d d dN1 2 . 

В случае априорной неизвестности nj(λk)  
представленный алгоритм можно дополнить 
обучающим алгоритмом с проведением предва-
рительных тестовых измерений на образцах из-
вестной толщины и состава. 

2.2. Тонкослойные композитные 
и нестехиометрические слои

Получаемые вакуумным напылением и по-
следующим доокислением металл-оксидные 
материалы часто представляют собой техноло-
гичные и  достаточно дешевые в  производстве 
металл-оксидные нанокомпозиты с  мелко-
зернистой структурой, микро- и  наночастицы 
которых представляют собой наноразмерное 
металлическое ядро, окруженное оксидной 
оболочкой переменного состава. Например, 
в случае железа формируется целый набор ок-
сидных фаз: вюстит FeO, проводящий магне-
тит Fe3O4, слабопроводящий полупроводник 
маггемит g-Fe2O3 и гематит a-Fe2O3. Кислород 
при их эксплуатации в  атмосферных услови-
ях может достаточно легко диффундировать 
нормально к  поверхности по  границам зерен 
вглубь пленки композита. В результате именно 

1	 В рефлектометрии на  практике обычно измеряется не  ампли-
тудный, а  энергетический коэффициент отражения G, равный 
квадрату модуля амплитудного: G = mod2(r).
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на  границах зерен преимущественно форми-
руется оксидная фаза. В  результате формовки 
такой металл/металл-оксидный нанокомпозит 
функционирует как коллектив последователь-
но-параллельных МДМ- и/или МОМ-элемен-
тов, обладающих мемристорными эффектами. 
При этом вольт-амперные характеристики все-
го композитного материала могут быть также 
нелинейными, обладающими выраженными 
мемристорными свойствами резистивного пе-
реключения всего ансамбля как целого [6]. 

Эллипсометрическая спектротомогра-
фия позволяет определить удельные содержа-
ния различных оксидных соединений железа 
в  мультикомпонентном слое композита. По 
аналогии с  неоднородными по  глубине плен-
ками, где неоднородный слой моделируется 
системой N-однородных слоев, здесь неодно-
родный по  составу оксид моделируется сме-
сью N-однородных по  составу фаз оксидов 
с  различными θ, равномерно распределенных 
по  объему материала. Если оптические спек-
тры этих соединений известны, проведение 
эллипсометрических измерений на  N-длинах 
волн дает возможность определить удельное 
содержание этих соединений в объеме поверх-
ностного слоя. 

Пусть ε λ( )   – диэлектрическая проницае-
мость поверхностного оксида-смеси, ε λj ( )   – 
диэлектрическая проницаемость j-го индиви-
дуального соединения с заданным xj, λ  – длина 

волны. Из уравнений эффективной среды [18–
20] следует

	 ε λ θ θ θ
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где θ j   – объемное содержание j-соединения 
в  неоднородном слое. Для нахождения всех 
N-объемных содержаний можно провести реф-
лектометрические измерения на  N-различных 
длинах волн. 

Для каждой длины волны может быть запи-
сано основное уравнение рефлектометрии для 
неоднородного поверхностного слоя, смодели-
рованного однородным слоем-смесью с диэлек-
трической проницаемостью ε λ θ θ θ( , , ,..., )1 2 N :
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	 (7)

где Y – функциональная запись основного урав-
нения рефлектометрии 1-слойной системы 
[18, 19], D – общая толщина неоднородного слоя 
композита. 

Для тонких по  сравнению с  длиной волны 
слоев, воспользовавшись уравнением (5), мож-
но записать в явном виде аналогичную систему 
уравнений для случая спектральных эллипсоме-
трических измерений: 
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где D(λj), y(λj)  – эллипсометрические пара-
метры подложки со  слоем на  длинах волн 
λj,; ε λ ε λa j s j( ) ( ),   – диэлектрические прони-
цаемости окружающей среды и  подложки, 
ε λ θ θ θj N; , , ,1 2 ( ) можно определить из  уравне-
ния (7), j – угол падения зондирующнго излуче-
ния на поверхность пленки композита, D – об-
щая толщина неоднородного слоя. 

Системы уравнений (7) и  (7′) являются 
классическими обратными задачами. При ис-
пользовании регуляризующих алгоритмов при 
разумных априорных предположениях [16, 17] 

на  решение такие системы можно решать для 
большого числа уравнений. По аналогии с пре-
дыдущим разделом можно воспользоваться ме-
тодом квазирешений. Из полученной системы 
уравнений (7) или (7′) можно определить объ-
емное содержание θj всех N-компонентов, вхо-
дящих в состав неоднородного поверхностного 
слоя2. 

2	 Расчет удельных содержаний металл-оксидного композита в дан-
ном разделе производится по методу квазирешений, совершенно 
аналогично предыдущему разделу о многослойных пленках.
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Данную задачу можно рассматривать как за-
дачу восстановления функции распределения 
химически неоднородного слоя в  пространстве 
его составов. Покажем это на  простом примере 
двойного соединения AyB, диэлектрическая про-
ницаемость которого ε λ( , )y  является известной 
функцией как длины волны λ, так и стехиометрии 
y, причем y меняется от y1 до y2. Введем функцию 
распределения V(y) объемного содержания соста-
вов слоя по y соотношением V y d y dy( ) ( )� � / , при 
этом V(y)dy  – доля объема неоднородного слоя, 
занимаемого соединением с  составом, лежащим 
в  диапазоне (y,y + dy). Задачей является поиск 
данной функции распределения. При аппрокси-
мации неоднородного слоя однородным эффек-
тивная диэлектрическая проницаемость ε λeff ( )  
этого однородного слоя может быть определена 
из уравнения эффективной cреды

	
ε λ
ε λ

ε λ
ε λ

eff

eff y

y

V y
y

y
dy

( )

( )
( )

( , )

( , )

−
+

= −
+∫

1

2

1

2
1

2

.	 (8)

Как и выше, левая часть данного уравнения 
(а именно ε λeff ( )) может быть определена экс-
периментально, на  основе спектральных реф-
лектометрических измерений и  дальнейших 
расчетов в  рамках однослойной модели. Таким 
образом, можно получить уравнение

	 V y
y

y
dy F

y

y

( )
( , )

( , )
( )

ε λ
ε λ

λ−
+

=∫
1

2
1

2

,	 (9)

где F( )λ  – экспериментально измеряемая функ-
ция. 

Из данного интегрального уравнения Фред-
гольма 1 рода можно далее определить вид 
функции V(y), т.е. найти распределение состава 
неоднородного поверхностного слоя по его объ-
ему, т.е. решить классическую обратную задачу, 
но уже в пространстве составов неоднородного 
слоя. 

Очевидно, для многокомпонентных ме-
талл-оксидных композиционных и  нестехио-
метрических соединений их состав во  многом 
определяет их физико-химические свойства. 
В  частности, вольт-амперные характеристики 
таких соединений во многом определяются объ-
емным соотношением проводящих, полупро-
водящих и непроводящих фаз, т.е. видом функ-
ции V(y). Очевидно, контроль функции V(y) 
в  процессе формирования металл-оксидного 
композита позволяет выбирать и  формировать 
металл-оксидные многослойные пленки и  на-
нокомпозиты с заданным составом, структурой 
и  морфологией, обладающими необходимыми 
электрическими свойствами мемристоров. 

3. ПРИМЕР РЕАЛИЗАЦИИ МЕТОДА

Использование нержавеющих хромистых ста-
лей в качестве химически стойких подложек для 
формирования компонентом микроэлектроники 
и, в  частности, мемристоров в  последнее время 
встречается все чаще [21, 22]. Очевидно, среди ме-
таллических материалов высокохромистые стали 
имеют преимущества благодаря своей высокой 
термической, механической и  химической ста-
бильности, большой устойчивости и стабильным 
эксплуатационным характеристикам в  течение 
длительного времени. Однако при атмосферном 
окислении или термическом оксидировании 
стальных подложек на их поверхности могут фор-
мироваться тонкие обогащенные оксидами же-
леза и хрома слои, сами по себе уже обладающие 
нелинейными электронными свойствами мемри-
сторов [6, 7]. Учитывая высокую распространен-
ность и технологичность сплавов на основе желе-
за и нержавеющих сталей, можно предположить, 
что металл-оксидные мемристоры на основе ок-
сидированных многокомпонентных сталей, вы-
полняющих функции металлической подложки и, 
по крайней мере, части металл-оксидной мемри-
сторной среды, могут быть использованы в каче-
стве достаточно дешевых и  надежных устройств 
энергонезависимой памяти. Поэтому исследова-
ние состава, структуры и  нелинейных электри-
ческих свойств многослойных и  многокомпо-
нентных металл-оксидных слоев и  композитных 
структур на  термически оксидированных сталях 
представляется достаточно перспективным. 

Ранее в  работах  [23–25] при исследованиях 
окисления образцов сплава Fe–18Cr в  области 
низкотемпературнрго активирования было по-
казано, что при изменении активности окисли-
теля структур состав, оптические свойства по-
верхностного термооксидного слоя кардинально 
меняются. Было показано, что при стандартном 
печном нагреве на  поверхности сплава форми-
руется неоднородный термооксидный слой, где 
концентрация окислов железа и хрома меняются 
по глубине оксида. 

В приведенных в  настоящей работе тестовых 
измерениях исследовалась структура термооксид-
ного слоя на стали (на основе системы Fe–18Cr) 
уже как градиентно-композитного. В  отличие 
от печного нагрева в данном случае использовал-
ся электроконтактный нагрев переменным током, 
что, как ожидается, позволило бы создать более 
совершенную 3-мерную градиентную структу-
ру металл-оксидной активной среды мемристо-
ра. Неоднородность оксидного слоя при этом 
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проявляется в изменяющемся объемном соотно-
шении окислов железа и хрома не только по глу-
бине, но и по поверхности оксидного слоя. На ко-
личественном уровне это означает, что объемная 
доля окислов хрома

	 θ=
(Cr O )+ (FeCr O )

(Cr O +Fe O +Fe O +FeCr O )
2 3 2 4

2 3 3 4 2 3 2 4

V V

V
	 (10)

в оксиде является функцией координаты r по объ-
ему оксида (θ θ= ( )r ). С точки зрения оптических 
параметров данное ограничение приведенными 
простыми окислами представляется оправдан-
ным. При этом оптические параметры оксида 
хрома и хромита достаточно близки. То же спра-
ведливо и для окислов железа: оптические пара-
метры магнетита и  гематита гораздо ближе, чем 
например магнетита и окислов хрома. 

4. МЕТОДИКА ЭКСПЕРИМЕНТА 
И РЕЗУЛЬТАТЫ

Использовали аустенитную сталь Х18Н10Т 
(аналог AISI-321), содержащую (%) 18 Сr, 10 Ni, 
I Ti, 0.2 Mn, 0.03 С. Вырезали пленочные образ-
цы-ленты одинакового размера длиной 100 мм, 
шириной 10 мм, толщиной 0.2 мм, шлифовали, 
полировали, промывали дистиллированной во-
дой, протравливали в  10% H2SO4, промывали 
в дистиллированной воде и далее в спирте. Далее 
образцы вносили в вакуумную камеру. Для элек-
троконтактного нагрева к  противоположным 
концам образцов подсоединяли электроды, под-
ключенные к мощному генератору переменного 
тока промышленной частоты (50 Гц). Далее ка-
меру вакуумировали. Окисление проводили при 

низком парциальном давлении (отжиг при ва-
кууме 10–8 Торр и температуре 670 K) и в области 
активно-пассивного перехода сплава Fe–18Cr 
(5 ⋅ 10–2 Торр, 570 K). Время окисления – 1 час. 

Для контроля толщины и  состава поверх-
ностного оксида был использован метод спек-
тральной эллипсометрии (автоматизированный 
эллипсометр Гартнер L-119 XUV). Источником 
монохроматического излучения служила воль-
фрамовая лампа с монохроматором МДР-4. 

Распределение химического состава по объ-
ему оксида и  толщину поверхностного окси-
да определяли вышеописанным методом эл-
лисометрической спектральной томографии, 
априорно допуская его состав: полуторный 
оксид хрома Cr2O3, гематит Fe2O3, магнетит 
Fe3O4, хромит FeCr2O4, термодинамически об-
условленные и экспериментально регистриру-
емые для выбранных условий оксидирования. 
Окислы других компонентов сплава в  состав 
поверхностного оксида, как правило, входят 
в  незначительных количествах [31]. Спектры 
оптических параметров данных оксидов брали 
из работ [27–29], сплава (подложки) – опреде-
лялись в контрольном эксперименте на исход-
ном отожженном образце в  приближении эф-
фективной подложки [18].

Для контроля морфологии поверхности 
использовали метод сканирующей электрон-
ной микроскопии [14]. Использовался растро-
вый электронно-микроскопический комплекс 
(РЭМ) с полевым катодом Quanta 650 FEG (FEI, 
Нидерланды) в режиме детектирования вторич-
ных электронов. 
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Рис.  2. Спектры эллипсометрических параметров ∆  (а) и  ψ  (б), полученные на  отожженной поверхности  
(1 час, 10–8 Торр, 670 К) и после 1 ч окисления (0.05 Торр) при 570 К; λ  – длина волны света, нм.
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На рис. 2 приведены спектры эллипсоме-
трических параметров ∆ (а) и  ψ (б), полученные 
на  отожженной поверхности (1 час, 10–8 Торр, 
670 К) и  после 1 ч окисления (0.05 Торр) при 
570 К; λ   – длина волны зондирующего излуче-
ния, нм.

Дискретизацию полученных спектров осу-
ществляли с  шагом 20 нм. При этом поиск 
θ θ θ= ( ,..., )1 N  включал поиск объемных содержа-
ний N-фаз неоднородного слоя, в каждом из ко-
торых θ  (объемная доля окислов хрома или же-
леза) менялась от 0 до 1 с шагом 0.2 ( θ  = 0:0.2:1). 
Рассчитанные с  использованием уравнений 
(8)–(11) по  полученным спектрам сглаженные 
профили содержания оксидов железа и  хрома 
по глубине приведены на рис. 3. 

Из рис.  3 видно, что для двух различных ус-
ловий оксидирования были получены два типа 
профилей распределения состава оксидного слоя. 
При высоковакуумном отжиге (670 К, 10–8 Торр) 
поверхностный оксид состоит главным образом 
из Сr2О3, FeCr2O4 и частично из окислов железа. 
При этом окислы хрома концентрируются около 
границы раздела оксид–газ. При понижении тем-
пературы до 570 К и повышении давления в каме-
ре до 0.05 Торр происходит образование оксидного 
слоя, преимущественно обогащенного окислами 
железа с наличием окислов хрома, концентриру-
ющихся около границы раздела металл–оксид. 
При росте парциального давления кислорода 
в системе фронт формирования слоя окислов хро-
ма Cr2O3 смещается от границы раздела оксид–газ 
все ближе к границе раздела металл–оксид.

Предположенная в  томографических рас-
четах композитная модель материала оксида 
(Fe3O4 + Cr2O3) может формально рассматривать-
ся как шпинель переменного (по глубине) состава 
Fe(Fe2-xCrx)O4, по существу представляющая собой 
твердый раствор CrOx и  Fe3O4. Когда локальное 
содержание хрома в  такой шпинели превышает 
критическое значение, в  данной точке толщины 
оксида реализуются условия формирования ок-
сидной фазы Cr2O3. При этом Cr2O3 может выде-
ляться в виде индивидуальной фазы. Место лока-
лизации данной реакции зависит от температуры 
и  парциального давления кислорода. Поэтому 
можно подобрать условия, при которых изби-
рательность оксидирования хромистых сплавов 
определяется не  просто соотношением общего 
объемного содержания окислов железа и  хрома 
в  неоднородном поверхностном оксиде, а  про-
странственной локализацией субслоя окислов 
хрома в объеме оксида.

Очевидно, при наложении внешней поляри-
зации3 на оксидный слой пространственная лока-
лизация субслоя окислов хрома в объеме оксида 
также должна смещаться. Речь идет о контактном 
наложении внешней поляризации (например, 
в  стандартной для мемристоров геометрии кон-
денсатора или с помощью зонда АСМ) на мемри-
сторную структуру: сплав–оксид–металл. Такое 
управление локализацией субслоя окислов хрома 

3	 Для мемристоров, где принцип работы обусловлен внешней по-
ляризацией и  результирующим управлением фазового состава 
и/или структуры металл-оксидной среды [1–6].
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Рис. 3. Рассчитанные профили объемного содержания Т окислов хрома (а) и окислов железа (б) в неоднородном 
поверхностном оксиде, полученные на отожженной поверхности (1 час, 10–8 Торр, 670 К) и после 1 часа окисления 
(0.05 Торр) при 570 К; x – координата “в глубину” оксида.
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в оксидном слое очевидно может привести к не-
линейным вольт-амперным характеристикам, ха-
рактерным для оксидных материалов энергонеза-
висимой памяти мемристоров. 

Другим характерным случаем формирования 
нелинейной металл-оксидной структуры на спла-
ве Fe–18Cr является рост магнетит-гематитового 
двойного слоя на  границе раздела с  атмосферой 
[6]. Очевидно, это происходит в  области актив-
но-пассивного перехода при давлении оксидиро-
вания 0.05 Торр (см. рис. 3б) [26]. Близкий случай 
был ранее рассмотрен в работе [6], где было по-
казано, что структура магнетит–гематит обладает 
нелинейными электрическими свойствами, ха-
рактерными для мемристоров.

На рис. 4а приведены данные электронноми-
кроскопических исследований стали после элек-
троконтактного нагрева при давлении 0.05 Торр 
при 570 K. Видно, что поверхностный слой состо-
ит, видимо, из сросшихся железо-оксидных нано-
кристаллитов размером 20–60 нм на границе раз-
дела с атмосферой. С учетом данных рис. 3 видно, 
что при давлении окислительной среды 0.05 Торр 
железо-оксидные нанокристаллиты формиру-
ются на  примыкающем к  сплаву компактному 
тонкому слою оксидов хрома. Исходя из  полу-
ченной средней толщины оксида 40 А и диаметра 
наночастиц оксида 20–60 нм, можно предполо-
жить, что поверхностный слой металл-оксидного 

нанокомпозита состоит из  плотно упакованных 
микрокристаллитов-пластинок гематита. Данный 
тип 2-мерной структуры оксидного слоя ранее уже 
неоднократно наблюдался при оксидировании 
железа [31–33]. Такая структура оксида обуслав-
ливает проницаемость кислорода по границам зе-
рен оксида к металлической подложке. Очевидно, 
результирующий рост концентрации кислорода 
по глубинам оксида с необходимостью ведет к ро-
сту средней регистрируемой скорости роста нано-
кристаллитов оксидов железа и подслоя окислов 
хрома, что подтверждается также данными энер-
годисперсионной спектроскопии (рис. 4б).

Очевидно, рассмотренное в  данной работе 
электроконтактное оксидирование переменным 
током может быть рассмотрено как метод фор-
мирования наноструктурированных 2-слойных 
оксидных слоев, обладающих потенциалом соз-
дания 2- и 3-мерных архитектур железо-оксидных 
мемристоров. 

Результаты контроля фазового состава ме-
талл-оксидного нанокомпозита на  основе ста-
ли коррелировали с  независимыми данными 
электронной Оже-спектроскопии с  послойным 
травлением аргоновым пучком. Это позволяет 
на  основании отдельной обучающей выборки 
данных по  нелинейно-электронным свойствам 
металл-оксидного нанокомпозита далее про-
гнозировать оптические свойства гибридных 

Рис. 4. Морфология (a) и элементный состав (б) поверхности стали Х18Н10Т после электроконтактного нагрева 
при 570 К в течение 1 часа при давлении 0.05 Торр.
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метал-оксидных покрытий на всех стадиях их ро-
ста и формовки по данным только бесконтактного 
in situ оптического контроля – рефлектометриче-
ского или эллипсометрического. 

ЗАКЛЮЧЕНИЕ

Рассмотрены примеры применения мето-
дов эллипсометрической томографии для не-
разрушающего контроля распределения ком-
плексного показателя преломления по  объему 
неоднородного композитного металл-оксидно-
го поверхностного слоя. Спектральные эллип-
сометрические измерения света, отраженного 
и  рассеяного неоднородным поверхностным 
слоем, позволяют реализовать томографиче-
ский принцип и восстановить внутреннее стро-
ение слоя путем решения интегрального урав-
нения 1 рода. Введение в  томографию новой 
координаты – длины волны зондирующего из-
лучения позволяет в рамках реконструктивной 
спектроскопии исследовать новый тип неод-
нородности  – неоднородность поверхностных 
слоев в пространстве химических составов.

Метод протестирован при исследовании 
электроконтактного оксидирования стали 
на  основе системы Fe–18Cr в  области низко-
температурного активирования, где при из-
менении активности окислителя структура, 
состав и  электрические свойства неоднород-
ного поверхностного термооксидного слоя су-
щественно меняются. Показано, что электро-
контактное оксидирование переменным током 
нержавеющей стали Х18Н10Т (аналог AISI-
321) может быть использовано как метод фор-
мирования наноструктурированных 3-мерных 
архитектур железо-оксидных фазовых мемри-
сторов.

В следующей части работы на основе разра-
ботанных методов спектральной томографии 
а также методов АСМ и зондовой спектроско-
пии будет продолжено модельное исследование 
процессов низкотемпературного роста и само-
организации нанокомпозитов на  основе ме-
талл-оксидных слоев, перспективных при по-
строении новых типов мемристоров, а  также 
новых элементов гелио- и оптоэлектроники. 
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