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Методом механического диспергирования получены композиционные пленочные материа-
лы полистирол/галлуазит. С  использованием дифференциальной сканирующей калориметрии 
и  термогравиметрического анализа исследованы термодеструкция и  релаксационные переходы 
в  полученных композитах. Установлено, что модификация полистирола галлуазитом приводит 
к  увеличению температуры стеклования. Показано, что характеристические температуры тер-
модеструкции композитов превосходят таковые для немодифицированного полимера. Методом 
Фримена–Кэрола определены кинетические параметры термического разложения исследован-
ных композитов.
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ВВЕДЕНИЕ

В последние десятилетия сохраняется устой-
чивый интерес к созданию и изучению свойств 
полимер-матричных композиционных матери-
алов, содержащих микро- и наночастицы неор-
ганических наполнителей. Данное направление 
исследований весьма перспективно как для мо-
дификации структуры полимера, улучшения 
его механических и  эксплуатационных харак-
теристик, так и для получения новых функцио-
нальных композитов, которые могут найти при-
менение в  электронике, оптике, строительной 
и  химической отраслях, а  также для решения 
биомедицинских и экологических проблем [1].

Одним из  полимеров, применяемых в  ка-
честве матрицы для создания гибридных орга-
но-неорганических композитов, является поли-
стирол (ПС). Это термопластичный полимер, 
обладающий хорошими пленкообразующими 

свойствами, оптической прозрачностью, высо-
кими диэлектрическими показателями, устойчи-
востью к  действию окружающей среды, низкой 
стоимостью и легкостью переработки и формова-
ния. ПС находит широкое применение в различ-
ных промышленных технологиях, строительстве, 
в  производстве упаковки, различных фильтров, 
бытовой техники, материалов медицинского на-
значения и т.д. [2]. Однако, несмотря на вышепе-
речисленные достоинства, полистирол обладает 
некоторыми недостатками, такими как высокая 
воспламеняемость и  выделение токсичных низ-
комолекулярных продуктов при горении [3]. 
Кроме того, изменения, происходящие в  поли-
мерном материале при воздействии повышенных 
температур и кислорода воздуха, приводят к ухуд-
шению физико-механических свойств. Поэтому 
для использования ПС и  композитов на  его ос-
нове во  многих технологических приложениях 
необходимо соблюдать определенные требования 
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к  их термической стабильности, обусловленные 
условиями переработки и эксплуатации. 

Анализ литературных публикаций показы-
вает, что повышение устойчивости к  действию 
высоких температур, а также целенаправленное 
регулирование таких параметров, как темпера-
тура стеклования, температурный предел термо-
деструкции и др., могут быть достигнуты путем 
допирования полимеров микро- и  наночасти-
цами неорганических наполнителей. Согласно 
литературным данным, в качестве модифициру-
ющих добавок к полимерам часто используются 
неорганические частицы различной химической 
природы, такие как глинистые минералы, фул-
лерен, углеродные нанотрубки, оксиды метал-
лов, кремнезем и др. [4–9]. 

В перечисленных публикациях было показа-
но, что влияние наполнителя на свойства поли-
мерных материалов зависит от нескольких фак-
торов: концентрация, размер, степень агрегации 
частиц и т.д. Авторами работы [10] было изучено 
термическое поведение композитов на  основе 
полистирола и  выявлено повышение термоста-
бильности при введении в матрицу органо-монт-
мориллонита. Увеличение температуры стеклова-
ния при модификации полистирола фуллереном 
установлено в статье [11]. В работе [12] исследо-
вано влияние концентрации модифицирующей 
добавки на  характеристические температуры 
релаксационного перехода из  стеклообразного 
состояния в высокоэластическое для композита 
полистирол/бентонит/магнетит и  обнаружена 
немонотонная зависимость температуры стекло-
вания от концентрации. 

Следует отметить, что среди известного ряда 
функциональных наполнителей особое место 
занимает природный глинистый минерал гал-
луазит (Гал), состоящий из многослойных алю-
мосиликатных нанотрубок с  полостью внутри. 
Длина нанотрубок изменяется от 300 до 1500 нм, 
внутренний и  внешний диаметры составляют 
15–100 нм и 40–120 нм соответственно [13]. На 
внешней поверхности нанотрубок располагают-
ся Al–OH-группы, в то время как на внутренней 
поверхности  – Si–O–Si-группы [14]. Галлуазит 
проявляет хорошую биосовместимость, низкую 
токсичность, химическую инертность, высокую 
стабильность и  устойчивость к  органическим 
растворителям, что позволяет использовать его 
и  материалы на  его основе в  качестве экологи-
чески чистых адсорбентов, фотокатализаторов, 
носителей для адресной доставки лекарствен-
ных средств, материалов для тканевой инжене-
рии, а также нанаполнителей полимеров [15, 16].

В литературе имеются публикации, посвя-
щенные исследованиям механических, термиче-
ских и огнестойких характеристик полимерных 
композитов, наполненных галлуазитом [17–19]. 
Однако следует отметить, что термическое пове-
дение композитов полистирол/галлуазит изуче-
но недостаточно, что существенно ограничивает 
возможности их практического использования. 
Поэтому актуальной задачей является накопле-
ние и  анализ экспериментальных данных, ка-
сающихся функционирования этих материалов 
при повышенных температурах. 

В настоящей работе получены образцы ком-
позиционных пленок полистирол/галлуазит 
с концентрацией наполнителя в интервале от 0 
до  5 мас. % и  с использованием методов диф-
ференциальной сканирующей калориметрии 
(ДСК) и термогравиметрии (ТГ) определены их 
термические характеристики. Математическая 
обработка экспериментальных данных по  тер-
модеструкции проведена с использованием ме-
тода Фримена–Кэрола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Композиционные пленочные материалы 
были получены методом механического дис-
пергирования частиц галлуазита (“Sigma-Aldri-
ch”, USA) в матрице атактического полистирола 
(Мn = 1.4∙105, Mw = 2.3⋅105, “Aldrich”, Germany).

Для этого были гравиметрически приготов-
лены растворы ПС в  толуоле (17 мас. % поли-
мера), содержащие галлуазит в  необходимых 
пропорциях, и  перемешаны на  магнитной 
мешалке со  скоростью 180 об/мин в  течение 
72 часов до получения однородного геля. Затем 
полученные растворы поливали на  тефлоно-
вую подложку и высушивали под вакуумом при 
комнатной температуре. В итоге были получе-
ны ПС-пленки и  пленочные композиты ПС/
галлуазит с концентрацией силикатного напол-
нителя в интервале от 1 до 5 мас. %. Предвари-
тельную очистку органического растворителя 
(толуола) проводили по  стандартным методи-
кам [20].

Исследования релаксационных переходов 
при нагревании пленок исходного ПС и  ком-
позитов ПС/галлуазит проводили с  помощью 
дифференциального сканирующего калориме-
тра DSC 204 F1 (“Netzsch”, Germany). Образцы 
пленок толщиной 40–50 мкм и диаметром 5 мм 
помещали в запрессованный алюминиевый ти-
гель с  проколотой крышкой. Масса пленок со-
ставляла 2–4 мг.
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ДСК-измерения проводили в потоке аргона 
(40 мл/мин) по следующей схеме. Первый этап: 
нагрев от комнатной температуры до 150°С и ох-
лаждение до 10°С со скоростью 10 град/мин. Вто-
рой этап: изотермический режим в течение 5 мин 
и нагрев до 150°С со скоростью 10 град/мин. Об-
разцом сравнения был пустой алюминиевый ти-
гель. Измерения проводили относительно базо-
вой линии, полученной для двух пустых тиглей 
при аналогичной программе нагрева и охлажде-
ния. Для каждого образца было проведено три 
параллельных ДСК-измерения. Калибровка ка-
лориметра была выполнена в соответствии с ра-
ботой [21].

Термогравиметрические измерения были 
проведены с  помощью микротермовесов TG 
209 F1 (“Netzsch”, Germany) в атмосфере аргона 
(скорость потока газа  – 30 мл/мин). Для этого 
полученный пленочный образец (ПС или ПС/
галлуазит) массой 2–4 мг помещали в платино-
вый тигель и нагревали от 25 до 550°С со скоро-
стью 10 град/мин. Точность определения массы 
составляла 10–3 мг. Для каждого образца было 
проведено три параллельных ТГ-измерения. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование релаксационных переходов 
в композитах полистирол/галлуазит

Как известно, при увеличении температу-
ры в  полимерных системах может наблюдаться 
релаксационный переход из  стеклообразного 
состояния в  высокоэластическое, связанный 
с изменением удельной теплоемкости материала 
и  проявляющийся в  виде ступени на  темпера-
турной зависимости теплового потока (кривая 
ДСК).

На рис.  1 приведены кривые ДСК для пле-
нок немодифицированного полистирола, по-
лученные при первом и  втором нагревах. На 
термограмме первого нагрева наблюдается эн-
дотермический пик, который, по-видимому, 
свидетельствует о  наличии остатков раствори-
теля (толуола) в пленке. При повторном нагреве 
этот пик отсутствует.

На основе данных второго нагрева были 
определены значения характеристических тем-
ператур, в качестве которых были выбраны: 

T1g  – температура начала релаксационного 
перехода, определенная методом пересечения 
касательных;

Tg – температура перегиба кривой ДСК, при-
нятая за температуру стеклования. 

Как видно из  табл.  1, температура стекло-
вания для пленки исходного полистирола со-
ставляет 94.2°С. Отметим, что эта величина 
значительно (более чем на  20°С) отличается 
от  полученной нами при ДСК-исследованиях 
ПС-пленок, отлитых из  растворов в  о-ксилоле 
[22]. Вывод о  существенном влиянии природы 
органического растворителя на температуру сте-
клования пленок на основе полистирола сделан 
также в работе [23].

Проведенные исследования показали, что 
введение галлуазита в  полистирол изменяет 
термическое поведение полимера. На рис.  2а 
представлены термограммы первого нагрева для 
немодифицированного полистирола и  пленоч-
ных композитов полистирол/галлуазит разного 
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Рис. 1. Кривые ДСК для ПС-пленок: 1 – первый на-
грев; 2 – второй нагрев.

Таблица 1. Параметры релаксационного перехода 
из стеклообразного состояния в высокоэластическое 
для композитов ПС/галлуазит с  различной концен-
трацией наполнителя

Образец T1g, °С Tg, °С

ПС 88.1 94.2

ПС + 1% Гал 90.9 95.9

ПС + 2% Гал 91.3 98.4

ПС + 3% Гал 90.7 95.6

ПС + 5% Гал 98.2 102.4
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состава. Видно, что для композитов упомянутый 
эндотермический пик смещен в  сторону более 
высоких температур по  сравнению с  исходным 
ПС. Это свидетельствует о  том, что галлуазит 
препятствует удалению толуола из  полимерной 
матрицы. В  пользу этого предположения ука-
зывает также анализ кривых ДСК для второго 
нагрева (рис.  2б). А  именно, если в  случае ис-
ходного ПС наблюдается монотонный характер 
кривой (рис.  2б, кривая 1), то  для композитов, 
содержащих 1–5 мас. % галлуазита, эта монотон-
ность нарушается и на кривых наблюдаются эн-
дотермические пики.

Характеристические температуры релакса-
ционных переходов для исследованных матери-
алов, полученные из  данных второго нагрева, 
приведены в  табл.  1. Сопоставление представ-
ленных значений позволяет заключить, что мо-
дификация полистирола галлуазитом приводит 
к  увеличению температуры стеклования. По 
мнению авторов работы [23], этот эффект может 
быть объяснен равномерным диспергироваием 
наполнителя в полимерной матрице, что затруд-
няет тепловые потоки в полимерных слоях.

Исследование термодеструкции композитов 
полистирол/галлуазит

Термогравиметрические кривые (ТГ и  ДТГ) 
для пленок немодифицированного полистирола 
и  пленочных композитов ПС/галлуазит пред-
ставлены на рис. 3. Как видно, ТГ-кривые харак-
теризуются двумя ступенями, т.е. терморазложе-
ние происходит в две стадии. На первом этапе (в 

температурном интервале от  115 до  190°C) по-
теря массы (Dm1 = 1–5%) связана с  удалением 
остатков растворителя из пленки. При этом, как 
видно из  табл.  2, в  случае композитов наблю-
дается меньшее снижение массы по сравнению 
с  немодифицированным ПС. Это согласуется 
со сделанным выше выводом, что галлуазит пре-
пятствует удалению толуола из полимерной ма-
трицы.

На втором этапе происходит собственно 
разложение вещества пленки из-за разруше-
ния полимерных цепей. Как видно из  рис.  3а, 
заметное снижение массы начинается при тем-
пературе около 300°С. В  интервале 300–450°С 
большинство полимерных цепей разрушается 
(Dm2 → 100%). На этом участке ТГ-кривой могут 
быть идентифицированы три характеристиче-
ские температуры: 

T1 – экстраполированная температура нача-
ла термодеструкции; 

Tm   – температура, соответствующая пику 
на ДТГ кривой или перегибу на ТГ кривой (при 
T = Tm скорость термодеструкции максимальна);

T2 – экстраполированная температура окон-
чания термодеструкции. 

Как видно из  табл.  2, характеристические 
температуры для композитов почти всегда пре-
восходят таковые для немодифицированного 
ПС. На рис. 3 это проявляется в смещении соот-
ветствующих ТГ-кривых и пиков ДТГ в сторону 
более высоких температур. Таким образом, по-
лученные результаты свидетельствует о положи-
тельном эффекте наполнителя на  термическую 
стабильность полимера.
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Рис. 2. Кривые ДСК первого нагрева (а) и второго нагрева (б) для композитов ПС/галлуазит с различной концен-
трацией наполнителя, мас. %: 0 (1); 1 (2); 2 (3); 3 (4); 5 (5).
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Расчет кинетических параметров 
термодеструкции

В настоящей работе данные ТГ-измерений 
были использованы для анализа кинетики тер-
модеструкции синтезированных композици-
онных пленок ПС/галлуазит. Для этих целей 
удобным оказался метод Фримена–Кэрола [24], 
позволяющий анализировать эксперименталь-
ные данные, полученные только для одной ско-
рости нагрева. Данным методом может быть 
найден порядок реакции (n) и  энергия актива-
ции (Ea), определяющая константу скорости де-
струкции. 

Основное уравнение метода Фримена–Кэ-
рола имеет вид

	
∆
∆

∆
∆

ln
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где M – масса образца; W dM

dT
=  – “скорость” по-

тери массы; R = 8.314 Дж/(моль⋅град) – универ-
сальная газовая постоянная; D(X), где X = lnM, 
lnW, 1/T – разница значений параметра X, соот-
ветствующих двум температурам.

Анализ уравнения (1) показывает, что в случае 
линейности экспериментальной зависимости 
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тангенс угла наклона этой прямой позволя-
ет рассчитать энергию активации. Кроме того, 
из величины отрезка, отсекаемого на оси орди-
нат, может быть определен порядок реакции. 

На рис.  4 квадратами обозначены экспе-
риментальные результаты термического раз-
ложения композитов полистирол/галлуазит 
в  координатах Фримена–Кэрола. Математиче-
ская обработка, проведенная с использованием 

Таблица 2. Характеристические температуры и убыль массы на первой и второй стадиях термического разло-
жения образцов композитов полистирол/галлуазит

Образец Dm1, % T1, °C Tm, °C T2, °C Dm2, %

ПС 4.48 389.6 411.4 425.3 95.50

ПС + 1% Гал 2.39 396.0 418.0 434.3 96.60

ПС + 2% Гал 1.49 391.9 420.6 442.9 94.74

ПС + 3% Гал 2.41 390.9 424.2 447.4 93.40

ПС + 5% Гал 2.47 388.8 420.7 437.9 95.71
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Рис. 3. Кривые ТГ (а) и ДТГ (б) для полистирола и композитов ПС/галлуазит с различной концентрацией наполнителя.
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Рис. 4. Данные термогравиметрии в координатах Фримена–Кэрола для композитов ПС/галлуазит с различной кон-
центрацией наполнителя: 1 – двухпараметрическое фитирование; 2 – однопараметрическое фитирование (с фик-
сированным n = 1).
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двухпараметрического фитирования, показа-
ла, что представленные данные хорошо описы-
ваются линейными зависимостями (прямые  1 
на рис. 4). Это подтверждается высокими значе-
ниями коэффициентов детерминации (R2 > 0.95, 
табл. 3) и свидетельствует о том, что данный ме-
тод может быть использован для определения 
кинетических параметров термодеструкции 
синтезированных полимерных композитов по-
листирол/галлуазит. 

В табл. 3 приведены численные значения по-
рядка реакции и энергии активации, полученные 
при двухпараметрическом фитировании. Как 
видно, для термодеструкции композитов поли-
стирол/галлуазит наблюдаются меньшие значе-
ния Ea по сравнению с таковым для немодифи-
цированного полимера. При этом рассчитанные 
значения n близки к  1 и  в зависимости от  кон-
центрации наполнителя составляют 0.86–1.35.

На втором этапе анализа было проведено од-
нопараметрическое фитирование эксперимен-
тальных данных. Целью этого этапа было уточ-
нение значений энергии активации, принимая 
во внимание постулат классической химической 
кинетики о целочисленности величины порядка 
одностадийной реакции. Для рассматриваемого 
процесса терморазложения и с учетом результа-
тов двухпараметрического фитирования было 
предположено, что n = 1 независимо от состава 
композита. Прямые 2 на  рис.  4 соответствуют 
этому виду фитирования.

Как видно из  табл.  3, при однопараметри-
ческом фитировании (при фиксированном 
значении n = 1) коэффициенты детермина-
ции практически не  отличаются от  таковых для 
двухпараметрического фитирования. Кроме того, 
при этом способе обработки экспериментальных 
данных (как и  в случае двухпараметрического 
фитирования) рассчитанные величины энергии 
активации термодеструкции композитов также 
оказались меньше, чем для исходного ПС. 

Таким образом, математический анализ тер-
могравиметрического поведения композитов 
полистирол/галлуазит показал, что введение 
глинистого наполнителя снижает энергию акти-
вации и, как следствие, увеличивает константу 
скорости термического разложения полимерно-
го материала.

Подводя итоги проведенным исследованиям 
по влиянию добавок галлуазита на термическое 
поведение полстирола, следует подчеркнуть, что 
при введении глинистого минерала характери-
стические температуры термодеструкции смеща-
ются в сторону более высоких значений. Однако 
при этом снижается энергия активации этого 
процесса, т.е. снижается энергетический барьер, 
необходимый для протекания реакции. Этот не-
обычный вывод свидетельствует о сложности ме-
ханизма термического разложения композитов 
полистирол/галлуазит и  необходимости даль-
нейших, более детальных исследований с  при-
влечением других физико-химических методов.
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