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ВВЕДЕНИЕ

Элементная база для систем накопления элек-
трической энергии состоит из химических источ-
ников тока (ХИТ), сверхъемких конденсаторов 
(ионисторов или СК) и  гибридных конденсато-
ров (ГК). В  ХИТ энергия накапливается за  счет 
протекания электрохимического процесса, в  СК 
она накапливается в двойном электрическом слое 
(ДЭС), в гибридных конденсаторах энергия нака-
пливается за счет интеграции двух механизмов на-
копления электрической энергии. Наиболее ши-
роко применяемыми сегодня источниками тока 
являются ХИТ, которые изготавливаются по тол-
стопленочной технологии (см. табл. 1) [1–2].

Из табл. 1 следует, что энергоемкость суще-
ствующих ХИТ в  промышленном производстве 

не  растет, а  в последних разработках даже суще-
ственно снижается. Если рассмотреть перспекти-
ву развития ХИТ [3] (см. табл. 2.3), то видно, что 
удельная энергоемкость бензина и лития (табл. 3) 
практически одинакова, а  серийно выпускаемые 
сегодня ХИТ используют энергетический потен-
циал лития с  малой степенью эффективности 
(табл. 2). 

Поэтому цель данной работы – анализ при-
чин низкой эффективности современных источ-
ников тока и  разработка методологических ос-
нов проектирования и технологии производства 
элементной базы систем хранения, накопления 
и  транспортировки электрической энергии. 
Актуальность работы определяется “Страте-
гией развития электронной промышленности 
Российской Федерации на  период до  2030 года 
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по  разделу изделия пассивной электронной 
компонентной базы”, по  направлению “Ин-
теллектуальная энергетика”, в которой впервые 
в явной форме связана проблема развития энер-
гетики РФ с электроникой.

ОСНОВНАЯ ЧАСТЬ

Анализ работы ХИТ (см. рис. 1, 2) позволяет 
сделать вывод об основных факторах, определя-
ющих их удельную энергоемкость [3]:

1. Количество лития, участвующего в  элек-
трохимическом процессе. 

Таблица 1. ХИТ, которые изготавливаются по толстопленочной технологии

Система Li C6x  и 
LiNi Co Al O2x y z

Li C6x  и 
LiCoO2

Li C6x  и 
LiNi Mn Co O2x y z

Li C6x  и 
LiMn O2 4

Li C6x  и 
LiFePO4

Li Ti O4 5 12  и 
LiNi Mn Co O2x y z

Коммерческая 
кодировка G/NCA G/LCO G/NMC G/LMO G/LFP LTO/NMC

Начало 
внедрения 1999 1991 2008 1996 1996 2008

Весовая 
энергия, Втꞏч/
кг

80–260 120–200 140–220 90–150 60–130 50–100

Объемная 
энергия, 
Втꞏч/л

210–640 250–490 270–365 250–280 125–300 118–200

Весовая 
мощность, 
Втꞏч

1000–1900 600 500–4000 1000 1400–4000 750–1100

Таблица 2. Перспектива развития ХИТ

№ Реакция ионизации E 0, В Qуд.
теор. , Aꞏч/кг Относит. цена за 1 Aꞏч

1 Li = Li+- e –3.04 3850 20

2 Mg 2 = Mg2+- e –2.37 2100 1

3 Al 3 = Li3+- e –1.66 2980 0.5

4 Cd 2 2OH Cd OH
2

− + = ( )e –0.81 440 20

5 Zn 2 Zn2+− =e –0.76 830 1

6 Pb SO 2 PbSO4
2

4+ − =− e –0.36 260 2

Таблица 3. Удельная энергоемкость

№ Горючее

Стандартный 
электродный 

потенциал 
горючего, В

Стандартная 
удельная 
энергия 

горючего, МДж/
кг (кВтꞏч/кг)

1 Н2 1.23 119.0 (33.1)

2 Li 3.045 42.3 (11.8)

3 Al 2.72 29.16 (8.1)

4 Бензин – 42.8 (12.0)
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2. Потенциал внедрения лития в анод в про-
цессе заряда и потенциал извлечения его из ано-
да в процессе разряда.

3. Разность электрохимических потенциалов 
ДЭС анода и  катода, которая в  первую очередь 
определяется работой выхода электронов ма-
териалов, участвующих в  электрохимическом 
процессе, и  для неводных электролитов может 
достигать значения 4.5 В.

Принцип работы ЛИА с  катодом на  основе 
LiCoO2  можно описать следующими химиче-
скими реакциями [4]:

x xeLi C LiC+ −+ + →6   
(на отрицательном электроде),
LiCoO Li CoO Li2 1 2→ + +−x x xe   
(на положительном электроде).

Итоговая реакция:  
LiCoO C Li CoO Li С2 1 2 66+ +− x x .

Сочетание LiCoO2  с  углеродом дает раз-
ность потенциалов порядка 4 В, обусловливаю-
щую высокие величины рабочего напряжения 
и  удельной энергоемкости ЛИА по  сравнению 
с другими аккумуляторами. 

Молекулярный вес LiCoO2  – 81 у.е. Процент 
содержания Li  – 6.7%. Теоретическая энерго-
емкость составляет 11.8 Вт⋅час/кг. При процен-
том содержании Li, равном 6.7%, теоретическая 
энергоемкость 1 килограмма LiCoO2  составляет 
790.6 Вт⋅час/кг.

Катод состоит из  алюминиевой фольги, со-
ставляющей от него 4%, и катодной массы – 96%. 
Тогда теоретическая удельная энергоемкость ка-
тода составляет 759 Вт⋅час/кг. Полностью извлечь 
литий из  керамики невозможно, в  связи с  де-
градацией ее структуры, но  экспериментально 
установлено, что 75% лития можно извлечь без 
существенных изменений структуры. Тогда прак-
тическая энергоемкость катода на  основе LiCO2 
равна 569.25 Вт⋅час/кг. Учитывая, что в катодную 

e– e–

Электролит 

Анод
(Графит) Сепаратор

Катод
(LiCoO2)

AlCu
Li+

Li+

Рис. 1. Принципиальная схема работы ХИТ.

Электролит: растворитель 16%
Соль 2% 

Токовыводы (1%)

Материал катода (35%)
Связующее (2%)
Проводящая добавка (3%)

Материал анода (17%)
Связующее (2%)

Сепаратор (3%)

Упаковка (5%)

Анодная фольга
(Cu) (10%)

Катодная фольга
(Al) (4%)

Рис. 2. Массовые доли элементов ХИТ.
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массу до 4% добавляются склеивающие и прово-
дящие добавки (см. рис. 2), это совпадает с экс-
периментальными результатами (табл. 4).

По толстопленочным технологиям серийно 
выпускаются ХИТ, в которых используются элек-
тродные материалы с  небольшой поверхностью 
(3 м2/г). В  последнее время активно развивает-
ся электрохимическая система с  анодом на  ос-
нове титаната лития Li4Ti5O12 (см. табл. 5) [5–7]. 
Анод (см. рис. 3) выполнен в виде нанокристал-
лической структуры, имеющей площадь поверх-
ности около 100 м2/г. Как показала практика, 
увеличение удельной поверхности анода позво-
лила значительно увеличить скорость переза-
рядки, повысить уровень безопасной эксплуата-
ции и расширить диапазон рабочих температур, 
в сравнении с литиевыми ХИТ с углеродным ано-
дом. Среди основных преимуществ литий-тита-
новых ХИТ следует выделить низкое внутреннее 
сопротивление, сверхбыструю зарядку, высокие 

токи зарядки и разрядки (увеличилось число ци-
клов заряд-разряд до 104). В связи с этими фак-
тами, можно сделать вывод, что ХИТ, представ-
ленные в  табл.  1, имеют стабильно работающий 
катод и количество циклов заряд–разряд можно 
увеличить за  счет снижения деструкции анода. 
Этот вывод подтверждается также фактом сниже-
ния количества циклов при росте удельной энер-
гоемкости ячеек за счет извлечения лития из ано-
да более чем 75%. Существенным недостатком 
анода на основе титаната лития является высокий 
потенциал внедрения и  извлечения лития в  его 
структуру (см. табл. 5), что значительно снижает 
удельную энергоемкость ХИТ.

Проведенный анализ позволяет в  первом 
приближении сформировать основные требова-
ния для проектирования ХИТ:

1. Удельная энергоемкость ХИТ определяется 
количеством химически активного материала, 
участвующего в  электрохимическом процессе, 
и величиной электрического потенциала в элек-
трохимической ячейке.

2. Удельная энергоемкость катода в  данной 
конструкции определяет энергоемкость ячейки.

3. Анод обеспечивает накопление лития и  в 
зависимости от  потенциала извлечения лития 
корректирует удельную энергоемкость электро-
химической ячейки.

4. Для увеличения количества химически 
активного материала можно создавать сложные 
катоды с добавками других химически активных 
материалов. Однако принципиального роста 
удельной энергоемкости в этом случае получить 
не удается (см. табл. 1).

Таблица 4. Экспериментальные результаты

№ Материал Средний 
потенциал, В

Удельная емкость, 
мAꞏч/г Удельная энергия, Втꞏч/кг

1 LiCoO2 3.8–3.9 140–145 546
2 LiNi Co Al O0 .8 0.15 0.05 2 3.7–3.8 180–200 680–760
3 LiNi Co Mn O0.33 0.33 0.33 2 3.7–3.8 160–170 610–650
4 LiMn O2 4 4.1 100–120 410–492
 5 LiFePO4 3.4–3.45 150–170 518–587

Таблица 5. Электрохимическая система с анодом на основе титаната лития Li4Ti5O12

Материал Потенциал внедрения 
лития, В

Потенциал извлечения 
лития, В

Коэффициент 
диффузии, см2/с

Объемные 
изменения, %

Графит 0.07; 0.1; 0.19 0.1; 0.14; 0.23 10–11…10–7 10
Li Ti 04 5 12 1.55 1.58 10–12…10–11 0.2

Графит Li4Ti5O12

LiO6
и TiO6 

Li+

Рис. 3. Анодные материалы на основе графита и ти-
таната лития.
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На рис. 4 представлена дорожная карта раз-
вития накопителй энергии, разбитая по  поко-
лениям. Из нее видно, что перспективный анод 
поколения 3 (рис. 5) уже может рассматривать-
ся как анод гибридного конденсатора. Матрица 
на  основе углерода может иметь поверхность 
более 1000 м2/г, что обеспечивает накопление 
энергии в  ДЭС, а  наночастицы кремния нака-
пливают энергию за  счет электрохимического 
процесса внедрения лития в кремний [8–11].

Таким образом, первой позицией для проек-
тирования элементной базы для систем накопле-
ния, хранения и транспортировки электрической 
энергии является использование в  дополнении 
к  традиционной толстопленочной технологии 
тонкопленочной рулонной технологии про-
изводства электродных материалов для ХИТ 
и СКС на основе углеродной матрицы с высокой 

удельной поверхностью. Одним из вариантов та-
кой матрицы может быть ткань типа “Бусофит”, 
обладающая высокоразвитой поверхностью бо-
лее 1000 м2/г. Ткань типа “Бусофит” – это один 
из немногих материалов на основе углерода, ко-
торый производится серийно. На первом этапе 
она используется в  качестве исходной матрицы, 
которая заполняется наночастицами химически 
активных и функциональных материалов с целью 
создания нового поколения электродных матери-
алов для ХИТ, ионисторов, гибридных конденса-
торов и конденсаторных структур с тонким слоем 
диэлектрика в  двойном слое ДЭС. В  результате 
появляются, наряду с  традиционными базовы-
ми конструкциями (ХИТ и  ионисторы), новые 
перспективные базовые конструкции гибридных 
конденсаторных структур, в которых интегриру-
ются два механизма накопления электрической 

Поколение 5
Литий–воздух (Li/O2)

Поколение 4
Твердотельные, с литиевым анодом

и конверсионным катодом (Li/S)
Поколение 3b

Катод: High-Enegy NCM высоковольтная
шпинель; Анод кремний + углерод

Поколение 3а
Катод: NCM( 622-811 )

Анод: Графит + кремний (5–10%)

Поколение 2b
Катод: NCM(532-622 ) Анод: углерод

Поколение 2а
Катод: NCM111 Анод: углерод

Поколение 1
Катод: LFP, NCA

Анод: углерод

Эволюционное
развитие

Переход на качественно новый
уровень технологий Новые виды

аккумуляторов

Усовершенствованные
ЛИА

ЛИА

2015 2020 20302025

Рис. 4. Дорожная карта развития накопителей энергии по поколениям.
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Рис. 5. Структура перспективного анодного материала (а) и его электрохимические характеристики (разрядно-за-
рядные кривые и диаграммы зависимости удельной емкости от номера цикла нанокомпозита и графен-кремния).
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энергии (в ДЭС и за счет протекания химических 
реакций), гибридных конденсаторных структур 
с тонким слоем диэлектрика в ДЭС, что позволя-
ет увеличивать рабочее напряжение электролити-
ческой ячейки выше 4.5 В, а также многослойные 
керамические конденсаторные структуры с  диэ-
лектрической проницаемостью активных мате-
риалов 106 и выше.

Первая позиция позволяет решать проблему 
роста энергоемкости и  безопасности эксплуата-
ции ХИТ и СКС за счет следующих факторов:

1. Уменьшение количества выделяемого 
тепла в  процессе работы ХИТ. Это происходит 
в результате снижения толщины химически ак-
тивной массы, нанесенной на  катод электро-
литической ячейки. Расчеты показывают, что 
снижение толщины химически активной массы 
с  400–200 мкм до  0.52  мкм приводит к  сниже-
нию тепловыделения до 50%. Кроме увеличения 
количества химической энергии, превращаемой 
в электрическую, это приводит к снижению тем-
пературы ХИТ, что обеспечивает рост безопас-
ности при эксплуатации.

2. Использование электродных материалов 
с  высокоразвитой поверхностью, включая мате-
риалы на основе графена, позволяет создавать ги-
бридные источники тока, в которых энергия нака-
пливается как за счет химических процессов, так 
и  в двойном электрическом слое. Это позволяет 
интегрировать два механизма накопления элек-
трической энергии в  электролитической ячей-
ке. В  аналитическом обзоре фирмы ВMPOWER 
(США) и в периодической литературе приводят-
ся результаты, позволяющие увеличить энерго-
емкость СКС в  56 раз. Если учесть, что емкость 
конденсаторных структур (КС) достигает 50–60 
Вт ⋅ ч/кг, а в перспективе 70–80 Вт ⋅ ч/кг, то мож-
но рассчитывать на  получение удельной энерго-
емкости на уровне 300–400 Вт ⋅ ч/кг.

3. Все эти факторы при интеграции в  одной 
ячейке могут обеспечить рост удельной энергоем-
кости до 350–500 Вт ⋅ ч/кг в течение 3–5 лет.

Второй позицией является использование на-
номатериалов и  нанотехнологии при разработке 
КС. Наночастицы металла в матрице углеродного 
материала  – прототип электродных материалов 
для источников тока 3–5 поколения (рис. 3). На 
рис.  6 представлен снимок с  электронного ми-
кроскопа углеродной матрицы с  наночастицами 
серебра.

Вторая позиция позволяет обеспечить даль-
нейшее увеличение энергоемкости за  счет 
применения новых наноматериалов и  нано-
технологий. Перспективным анодом для ХИТ 

поколения 3а и  36 является наноструктуриро-
ванный электродный материал, который пред-
ставляет собой матрицу на основе углерода, за-
полненную наноструктурированным химически 
активным материалом. В связи с тем, что гибкая 
матрица имеет высокую удельную поверхность, 
накопление энергии в  электродном материале 
происходит по двум механизмам (за счет проте-
кания электрохимической реакции и в двойном 
электрическом слое ДЭС). В результате электро-
химическая ячейка источников тока 3–5 поко-
ления представляет собой гибридный конден-
сатор. Дальнейшее развитие ХИТ поколения 4 
и 5 связано с созданием металл-сернистых и ме-
талл-воздушных ХИТ, где такой анод соединяет-
ся с катодом, обеспечивающим движение к нему 
кислорода или серы соответственно. Перспек-
тивными материалами для заполнения углерод-
ной матрицы являются Li и  его сплавы, Si, Al, 
Na Sn, Mg, Zn, Ni, Co, Ag и ряд других матери-
алов и их соединений, которые позволяют про-
изводить элементную базу накопителей энергии 
с применением лития и на основе других мате-
риалов.

Третья позиция основана на использовании 
методологии микроэлектроники при разработ-
ке и производстве ХИТ и СКС, которая состо-
ит в  четком определении количества базовых 
элементов и базовых технологий и постоянном 
их совершенствовании. Это позволяет решать 
дальнейшее увеличение энергоемкости за  счет 
постоянного совершенствования базовых кон-
струкций и  технологий производства ХИТ 
и СКС. Так, например, за счет постоянного со-
вершенствования конструкции и  технологии 
производств в  микроэлектронике стоимость 
транзистора снизилась в  900 раз, а  размер  – 
с 510 мкм до 22 нм. Опыт электроники показыва-
ет, что за счет совершенствования производства 

Рис.  6. Снимок с  электронного микроскопа угле-
родной матрицы с наночастицами серебра.

500 нм
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улучшаются характеристики изделия на 25–30%. 
Поэтому можно говорить о том, что через 8–10 
лет будет достигнута энергоемкость источников 
тока на уровне 900–1250 Втꞏч/кг. Основные не-
достатки ХИТ, которые существенно осложня-
ют их эксплуатацию, такие как большое время 
зарядки, относительно малая мощность и суще-
ственное падение энергоемкости при снижении 
температуры, в  значительной мере компенси-
руются при совместном использовании ХИТ 
и  СКС. Использование электродных материа-
лов с  высокоразвитой поверхностью позволя-
ет создавать гибридные источники тока, в  ко-
торых энергия накапливается как за счет ХИТ, 
так и в ДЭС, при этом в конденсаторах можно 
достигать существенно более высоких рабочих 
напряжений (10 В и  более), что значительно 
упрощает конструкции накопителей энергии 
с высокой энергоемкостью (более 10 кВтꞏч). 

ВЫВОДЫ

1. Для стабильного развития перспективных 
систем генерации энергии, транспорта на  элек-
тродвигателях, систем индивидуального обеспе-
чения электроэнергией жилых и промышленных 
помещений, систем безопасности и  ряда других 
областей применения эксперты называют удель-
ную энергоемкость для многоразовых ХИТ  – 
350–500 Вт⋅час/кг на  первом этапе и  затем 1000 
Вт⋅час/кг на  втором этапе. Эти цифры позволя-
ют сделать заключение о  необходимости созда-
ния технологического комплекса, обеспечиваю-
щего такой высокий потенциала развития ХИТ 
и  источников тока в  целом. Поэтому в  послед-
нее время большое внимание привлекает тонко-
пленочная технология производства ХИТ, КС, 
и  гибридных КС на  основе унифицированного 
электродного материала, которая обеспечивает 
реализацию этого потенциала. Такой подход по-
зволяет снизить внутреннее сопротивление ХИТ, 
что приводит к  уменьшению тепловыделения 
в процессе работы и, соответственно, к увеличе-
нию удельной энергоемкости и безопасности экс-
плуатации. Уменьшение количества выделяемого 
тепла в  процессе работы ХИТ происходит в  ре-
зультате снижения толщины химически активной 
массы, нанесенной на  катод электролитической 
ячейки. Для оценки перспективы развития тонко-
пленочной технологии в дальнейшей работе будет 
рассмотрена математическая модель гибридно-
го конденсатора, в  которой будет показано, что 
такая технология позволяет использовать более 
широкий спектр конструктивно-технологических 

решений и обеспечивать необходимую динамику 
роста характеристик источников тока.

2. Данная отрасль имеет высокую концен-
трацию производств с  ограниченным количе-
ством игроков. Это связано с  концентрацией 
в отрасли исходных материалов для накопителей 
энергии. Степень концентрации производства 
будет расти дальше, и этому будет способство-
вать ускоряющаяся гонка технологий. Чтобы 
не  проиграть, необходимо вести масштабные 
научные и технологические исследования в этой 
области. По оценкам консалтинговой компании 
Benchmark, в ближайшие несколько лет в мире 
запустят 26 мегафабрик по производству нако-
пителей энергии. К  категории мегафабрик от-
носят заводы, которые за год производят нако-
пители энергии с  общей производительностью 
1 ГВт ⋅ ч. Объем инвестиций в  фабрику с  про-
изводительностью 1 ГВт ⋅ ч составляет $140 млн 
($140 за 1 кВт ⋅ ч). Предлагаемая идеология раз-
вития является основой для создания таких ме-
гафабрик.
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