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ВВЕДЕНИЕ

В настоящее время фотохромные гетеро-
циклические соединения используются в  раз-
личных областях науки, промышленности, 
медицины, оздоровления и  т.д. [1, 2]. Одним 
из  важнейших классов таких соединений яв-
ляются спиронафтоксазины (СНО), облада-
ющие набором особых свойств, включающим 
способность к  обратимым термо- и  фотоин-
дуцированным структурным переходам, ко-
ординационную активность, люминесценцию 
и  т.п. [3–5]. Такие особенности обуславлива-
ют применение СНО в  устройствах передачи 
и  хранения информации [6–8], металлосенсо-
рах [9], светочувствительных элементах [10]. 
Технологическая пригодность таких соедине-
ний основана на  возможности их интегриро-
вания в  полимерные матрицы [11], мицеллы 

[12] и  наночастицы [13], липосомы [14, 15], 
жидкокристаллические системы [16], самоор-
ганизованные монослои [17, 18] и  т.п. Однако 
в свете тенденции последних десятилетий к ми-
ниатюризации устройств особо перспектив-
ным представляется формирование ультратон-
ких пленок из  спиронафтоксазинов методом 
Ленгмюра–Блоджетт, обеспечивающим орга-
низацию молекул в  упорядоченные структуры 
без потери их функциональных характеристик. 
Для этого спиросоединения необходимо моди-
фицировать протяженными алифатическими 
заместителями, что позволяет получать ста-
бильные ленгмюровские монослои на  поверх-
ности водных субфаз, предорганизовывать их 
и переносить на твердую поверхность в задан-
ном состоянии [19]. Однако такой синтез яв-
ляется трудоемким процессом, а  получаемые 
в результате дифильные продукты могут терять 
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свои функциональные качества. В связи с этим 
в настоящее время актуальной задачей является 
прогнозирование физико-химических, фото-
физических и оптических свойств СНО с  уче-
том их структуры, сравнение модельных ха-
рактеристик с  экспериментальными данными 
и  построение химико-информационных моде-
лей, позволяющих предсказывать фотохромное 
поведение целого класса соединений. 

Анализ литературы показал, что для мо-
делирования оптических свойств сложных 
органических красителей различных клас-
сов в основном применяют два подхода: одно
конфигурационный, использующий TD-DFT, 
и  многоконфигурационный  – на  основе 
CASSCF [20–23]. Каждый из  этих методов 
имеет как свои преимущества, так и недостат-
ки. Например, предсказание спектрального 
положения основных полос поглощения ор-
ганических красителей на  основе TD-DFT 
не  всегда является достаточно точным. Одним 
из  способов решения данной проблемы явля-
ется разработка новых линейных регрессий, 
устанавливающих взаимосвязь между расчет-
ными и  экспериментальными данными либо 
модификация уже существующих регрессий 
такого типа путем построения оптимальных 
комбинаций базисов, функционалов, а  также 
моделей растворителей [24–26]. В  силу того, 
что сопряженная π-система СНО сильно дело-
кализована, большие ошибки в  вычислениях 
связаны с  недостаточным учетом статической 
электронной корреляции. Известно, что мно-
гоконфигурационные методы могут успешно 
решать эту проблему. Расчетные схемы, ос-
нованные на  CASSCF, успешно применяются 
для изучения спиросоединений, например, так 
был определен механизм разрыва пираново-
го кольца при фотоиндуцированном переходе 
спиропирана из бесцветного состояния в окра-
шенное [27, 28]. Тем не менее многоконфигура-
ционный подход в  моделировании оптических 
свойств спиросоединений не  нашел широкого 
применения из-за высоких требований к  вы-
числительным мощностям, а для спиронафток-
сазиновых производных такие работы вообще 
не проводились. В связи с этим настоящая ра-
бота посвящена разработке комбинированных 
методик расчета спектральных характеристик 
дифильных спирооксазинов, сравнению ре-
зультатов теоретических расчетов с  экспери-
ментальными данными, а  также построению 
новых предсказательных моделей для прогно-
зирования свойств фотохромов этого класса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дифильные 3.3-диметил-1-гексадецил-1.3-ди-
гидроспиро[индолин-2.3`-нафто [2.1-b][1.4] ок-
сазин]-9`-ол (I), 1-гексадецил-3.3-диметилспи-
ро[индолин-2.3`-нафто[2.1-b][1.4]оксазин] (II) 
3.3,5-триметил-1-гексадецил-1.3-дигидроспи-
ро[индолин-2.3`-нафто [2.1-b][1.4]оксазин]-9`-ол 
(III) и  5-(гексадецилокси)-1.3,3-триметилспи-
ро[индолин-2.3`-нафто[2.1-b][1.4]оксазин]-9`-ол 
(IV) синтезировали по  известным методикам 
[29, 30]. 1.3,3-триметилспиро[индолин-2.3`-наф-
то[2.1-b][1.4]оксазин] (V), (Sigma-Aldrich 
Mr = 328 г/моль, чистота >99.9%), использова-
ли без дополнительной очистки. Электронные 
спектры поглощения растворов регистрировали 
с  помощью оптоволоконного спектрофотометра 
“Avantes АvaSpec-2048-2” (Нидерланды) в интер-
вале 200–900 нм при разрешающей способно-
сти 0.1 нм и  двухканального спектрофотометра 
JASCO V–730 (Япония) в  интервале 200–800 нм 
при разрешающей способности 0.3 нм.

Исследования фотохромных свойств про-
водили в  растворах ацетонитрила (“осч”), ме-
танола (“осч”), хлороформа (“осч”) и ацетона 
(“осч”) с  концентрацией оптически активных 
соединений 1∙10–4 М в  стандартных кварце-
вых кюветах (длина оптического пути — 1 см). 
Облучение ультрафиолетом с  длиной волны 
365 нм осуществляли с  помощью УФ-свето-
диода, обеспечивающего сфокусированный 
поток света (выходная мощность  — 1.7 мВт), 
в непосредственной близости от исследуемого 
раствора.

Оптимизацию геометрии всех структур 
проводили методом DFT c гибридным функ-
ционалом PBE0. В  качестве базисного набора 
использовали “трипл–ζ” базис def2-TZVP [31], 
с приближением RIJCOSX [32] и дополнитель-
ным базисным набором def2/J [33]. Для учета 
дисперсионного взаимодействия использовали 
поправка на попарную дисперсию атомов D3BJ 
[34, 35]. Для всех полученных структур были 
выполнены расчеты матрицы Гессе для под-
тверждения равновесности полученных кон-
формаций с  аналогичным функционалом, ба-
зисным набором и остальными используемыми 
приближениями. Для учета влияния раствори-
теля на энергию, структуру и электронное рас-
пределение использовали модель CPCM [36]. 
Учет конфигурационного взаимодействия осу-
ществляли методом TD-DFT без аппроксима-
ции TDA, с использованием гибридного функ-
ционала B3LYP на базисном наборе def2-TZVP. 
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Расчеты мультиконфигурационного взаимо-
действия проводили с  использованием метода 
CASSCF/NEVPT2 на  аналогичном базисном 
наборе. Все квантово-химические расчеты про-
ведены с  помощью программного пакета Orca 
5.0.4 [37, 38].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спиронафтоксазины могут обратимо пе-
реходить из  бесцветного закрытого состоя-
ния в  окрашенную мероцианиновую форму 
(см. рис. 1). Особенностью такого перехода яв-
ляется его обратимость, обуславливающая фо-
тохромизм соединений данного класса. Другой 
отличительной чертой спиронафтоксазинов 
являются высокие значения скоростей темно-
вой релаксации – СНО переходят из окрашен-
ной формы в бесцветную заметно быстрее дру-
гих классов спиросоединений.

Спирооксазины, так же как и  спиропира-
ны [39], могут существовать как минимум в  10 
различных конформациях: в 2 закрытых и  8 
открытых формах (см. рис. 2). Конформации 

закрытых спироформ различаются между собой 
по ориентации кислорода относительно неподе-
ленной электронной пары (НЭП) азота индоли-
новой части молекулы (рис. 2a). В этом случае их 
можно разделить на цис- и транс-конформеры. 
В открытой форме две части молекулы могут ме-
нять свое расположение относительно друг дру-
га путем вращения вокруг трех потенциальных 
двойных связей, образуя наборы транс-/цис-/
форм. При обозначении конформаций отсчет 
цис-транс-конфигураций принято начинать 
от спироуглерода. На рис. 2б в качестве примера 
представлен переход между ТТС- и  СТС-кон-
формациями спиронафтоксазина.

В работе [39] с  помощью метода TD-DFT 
и  использования шкалирующих коэффициен-
тов показана возможность расчета оптических 
характеристик мероцианиновых форм дифиль-
ных спиропиранов. В  органических раствори-
телях для этих соединений наиболее энерге-
тически устойчивыми являются конформации 
TTC и  CTC, отвечающие за  окраску мероциа-
нинов. Отличие спиронафтоксазинов от пира-
новых аналогов заключается в  наличии атома 
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Рис. 1. Схема фотохромизма спиронафтоксазинов.
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азота в  хроменовой части молекулы, в  связи 
с чем природа полосы поглощения, отвечающей 
за окраску, может сильно отличаться за счет на-
личия потенциальных n–π-переходов. Таким 
образом, для построения предсказательных мо-
делей, описывающих свойства этого класса фо-
тохромов, необходима разработка новых кор-
реляционных регрессий. Для моделирования 
энергий электронных переходов был выбран 
ряд дифильных спиронафтоксазинов, отлича-
ющихся наличием и положением заместителей 
в индолиновой и хроменовой частях молекулы, 
структуры которых представлены на рис. 3 (I–
IV). Фотохром V на рис. 3 не является дифиль-
ным спиронафтоксазином и включен в выбор-
ку для контроля изменения оптических свойств 
при переходе от  незамещенных соединений 
к длинноцепочечным.

Моделирование структурных параметров 
и относительной энергетической устойчивости 
проводили в  газовой фазе, а  также в  средах 4 
растворителей (ацетон, ацетонитрил, хлоро-
форм и  метанол) с  использованием сольва-
тационной модели CPCM. Для всех полу-
ченных структур проведены расчеты матриц 
Гессе, подтверждающие их равновесность. 
Рассчитанные относительные энергии Гибб-
са образования данных соединений в  вакууме 

и различных растворителях, а также расчетные 
полосы поглощения устойчивых конформаций 
мероцианинов сведены в  табл.  1. В  качестве 
точки отсчета для каждого набора данных при-
нято значение энергии наиболее устойчивой 
конформации закрытой формы в  транс-поло-
жении – Спироtrans. 

Рассчитанные значения энергий пока-
зывают, что все мероцианиновые формы 
в цис-конфигурации по второй двойной связи 
в мостиковой части молекулы являются край-
не нестабильными, несмотря на  то, что эти 
состояния находятся в  локальном минимуме 
поверхности потенциальной энергии. Учиты-
вая последовательность перехода одних форм 
в другие путем вращений вокруг двойных свя-
зей, структуры TCC и  CCC, образующиеся 
в  результате фотохимического разрыва связи 
Сспиро–О, должны быть связующими формами 
между закрытыми и  стабильными открытыми 
конформациями согласно схеме 1.

	 Спиро ССС CTCcis ® ® 	

	 Спиро TCC TTCtrans ® ® 	

Схема 1. Переход спиронафтоксана из  закрытой 
в открытую форму через связующие формы.
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Таблица 1. Энергетические параметры спиро- и мероцианиновых форм исследованных соединений, кДж/моль. 
Длины волн расчетных электронных переходов для стабильных мероцианиновых форм, нм 

Соединение I

Форма
Вакуум Ацетонитрил Ацетон Хлороформ Метанол

ΔE ΔE λ ΔE λ ΔE λ ΔE λ

CTC 27.9 16.1 527/507 16.6 528/508 19.5 533/512 16.2 526/506

CTT 54.4 37.3 530/437 37.6 531/436 42.3 534/436 41.4 529/436

TTC 25.6 10.9 526/500 11.4 527/501 15.1 532/505 10.9 526/500

TTT 58.4 34 517/432 34.9 517/432 40.6 518/432 34.2 516/432

Спироcis 7.9 7.7 – 7.7 – 7.6 – 8.2 –

Спироtrans 0 0 – 0 – 0 – 0 –

CCC 77.4 – – – – – – – –

CCT 109.2 81.3 – 82.3 – 89.1 – 81.9 –

TCC 97.6 – – – – – – – –

TCT 125.6 95 – 96.3 – 103.1 – 95.8 –

Соединение II

Форма
Вакуум Ацетонитрил Ацетон Хлороформ Метанол

ΔE ΔE λ ΔE λ ΔE λ ΔE λ

CTC 31.1 17 536/512 17.6 536/512 21 541/517 17.1 535/511

CTT 56.3 39.3 541/420 40.3 542/421 43.8 544/427 39.5 540/420

TTC 26.9 11.4 527/512 11.9 527/513 15.7 532/517 11.5 526/512

TTT 60.6 34.9 529/419 35.9 529/420 42.3 531/427 35.1 528/419

Спироcis 8 7.8 – 7.8 – 7.8 – 7.8 –

Спироtrans 0 0 – 0 – 0 – 0 –

CCC 78.1 – – – – – – – –

CCT 111.8 84.8 – 85.8 – 92.3 – 85 –

TCC 98.7 – – – – – – – –

TCT 124 96.7 – 97.9 – 105.3 – 96.8 –

Соединение III

Форма
Вакуум Ацетонитрил Ацетон Хлороформ Метанол

ΔE ΔE λ ΔE λ ΔE λ ΔE λ

CTC 26.1 12.9 529/509 13.4 530/510 16.8 534/515 13 528/509

CTT 52.8 38.8 536/435 35.3 537/435 40 539/435 39 535/435

TTC 24.1 7.9 528/502 8.5 529/503 12.4 533/507 7.9 528/502
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TTT 56.9 31.8 522/431 32.7 523/431 38.6 524/431 31.9 521/431

Спироcis 8 8.3 – 8.3 – 8.1 – 8.2 –

Спироtrans 0 0 – 0 – 0 – 0 –

CCC 75.5 – – – – – – – –

CCT 108 78.9 – 80.1 – 87.3 – 79.2 –

TCC 95.6 – – – – – – – –

TCT 125.3 92.6 – 94.1 – 102.1 – 92.9 –

Соединение IV

Форма
Вакуум Ацетонитрил Ацетон Хлороформ Метанол

ΔE ΔE λ ΔE λ ΔE λ ΔE λ

CTC 31.1 13.1 540/506 13.8 540/507 18.3 543/513 13.1 539/506

CTT 59 36 551/439 37 551/439 43 552/441 36.2 550/439

TTC 23.1 6.1 533/510 6.7 533/511 10.9 534/518 6.2 532/510

TTT 59 32.4 542/435 33.6 542/435 40.5 541/437 32.6 541/435

Спироcis –0.8 7.5 – 7.4 – 6.8 – 7.5 –

Спироtrans 0 0 – 0 – 0 – 0 –

CCC 67.2 – – – – – – – –

CCT 102.9 71.2 – 72.4 – 80 – 71.4 –

TCC 92 – – – – – – – –

TCT 124.1 91.2 – 92.7 – 100.8 – 91.4 –

Соединение V

Форма
Вакуум Ацетонитрил Ацетон Хлороформ Метанол

ΔE ΔE λ ΔE λ ΔE λ ΔE λ

CTC 36.3 21.6 532/508 22.2 533/509 25.7 538/513 21.7 531/507

CTT 62.9 45.7 537/424 46.5 537/425 48.6 539/431 45.8 536/424

TTC 28.9 13.4 523/514 13.9 524/514 17.7 530/518 13.4 523/513

TTT 62.1 37.5 527/420 38.5 527/421 44.7 528/428 37.7 526/421

Спироcis 5.5 5.7/532 – 5.7 – 5.6 – 5.7 –

Спироtrans 0 0 – 0 – 0 – 0 –

CCC 71.7 – – – – – – – –

CCT 107.7 79.1 – 80.2 – 87.1 – 79.3 –

TCC 98.2 – – – – – – – –

TCT 122.9 97 – 98.1 – 104.9 – 97.1 –

Таблица 1. Окончание
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Механизм перехода в  промежуточное со-
стояние можно описать с  помощью процессов 
с  участием возбужденных состояний. Известно, 
что раскрытие кольца в  спиропиранах протека-
ет через конические пересечения возбужденного 
и  основного электронных состояний в  момент 
растяжения Сспиро–О-связи под действием уль-
трафиолетового света [27, 28]. Очевидно, при-
рода фотохромного перехода спиронафтоксази-
нов из бесцветной в окрашенную форму должна 
быть такой же, как и  у соединений спиропира-
нового ряда. С  другой стороны, у  спирооксази-
нов транс-конформации по  третьей связи (ССТ 
и  ТСТ) не  принимают непосредственного уча-
стия в реакции раскрытия/закрытия оксазиново-
го кольца и могут быть получены только из более 
стабильных мероцианиновых форм. Учитывая 
большую разницу в  полной энергии таких кон-
формаций по сравнению как с другими мероци-
аниновыми формами, так и  со спироформами, 
можно сделать вывод, что такие структуры не су-
ществуют.

Другой отличительной чертой спиронафток-
сазинов является то, что ССС- и ТСС-формы при 
сольватации перестают быть равновесными  – 
при расчете структуры, предварительно оптими-
зированной в вакууме и помещенной в раствори-
тель, в матрице Гессе появляются отрицательные 
колебательные моды. Дальнейшая оптимизация 
с использованием сольватационных моделей по-
казывает, что оксазиновое кольцо закрывается, 
а  структура возвращается к  состоянию Спироcis 

в  случае оптимизации ССС-конформации либо 
к  Спироtrans в  случае ТСС. Расчеты показывают, 
что в  растворе мероцианиновая форма более 
стабильна, чем в газовой фазе. Более того, с уве-
личением полярности среды разность между 
энергиями открытой и  закрытой форм умень-
шается, поскольку дипольный момент мероциа-
нина выше, чем у спироформы. Полярные рас-
творители оказывают стабилизирующий эффект 
на окрашенное соединение. Действительно, ана-
лиз изменения спектров поглощения открытых 
форм спиронафтоксазинов в различных раство-
рителях показал, что с увеличением полярности 
среды время темновой релаксации фотохромов 
увеличивается. На рис. 4 и в табл. 2 представле-
ны экспериментальные данные о  спектральных 
характеристиках мероцианиновых форм иссле-
дуемых соединений. Очевидно, что с  увеличе-
нием полярности растворителя наблюдается не-
значительный гипсохромный сдвиг максимумов 
поглощения (см. рис.  4б), что свидетельствует 
о  сложном характере электронных переходов 
в молекуле.

Ранее было показано, что при моделирова-
нии оптических параметров дифильных мероци-
анинов нет необходимости использовать модели 
с  длинной алифатической цепью [39]. Действи-
тельно, расчеты, проведенные для соединений 
I–IV в конформации ТТС, показали, что при уве-
личении длины алкильного радикала больше чем 
на четыре атома углерода положение спектраль-
ной полосы не меняется. 
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Рис. 4. Спектры соединений I–V в ацетонитриле (а), спектры дифильного незамещенного спиронафтоксазина II 
в различных растворителях (б).



	 ПРЕДИКТИВНОЕ МОДЕЛИРОВАНИЕ ФОТОХРОМИЗМА ДИФИЛЬНЫХ СПИРОНАФТОКСАЗИНОВ	 149

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ  том 61  № 2  2025

Сравнение теоретических и эксперименталь-
ных данных показало, что лучшее соответствие 
наблюдается для более энергетически стабильных 
конформаций CTC и ТТС. Следует отметить, что 
расчеты методом TD-DFT показывают наличие 
двух вертикальных электронных переходов, фор-
мирующих основную полосу поглощения спиро-
нафтоксазинов (см. рис.  5). Каждый из  этих пе-
реходов состоит из двух компонент: π→π* и n→π*, 
первая из которых отвечает разрыхлению двойной 
мостиковой связи, а вторая – переходу электрона 
с  НЭП азота мостиковой части на  разрыхляю-
щую π*-орбиталь. Если соотношение компонент 
в  полосах одинаково, то  интенсивности линий 
сопоставимы. Чем больше вклад n→π*-перехода 
в  линию, тем меньше ее интенсивность, вплоть 
до  запрета. Анализ экспериментальных данных 
показал наличие слабовыраженного сольва-
тохромного эффекта (меньше 10 нм) у  молекул 

СНО, что не позволяет однозначно отнести элек-
тронный переход к какому-то одному типу. Дан-
ный переход имеет комплексный характер, что 
и  подтверждается расчетами TD-DFT. Данные 
закономерности выполняются для всех раство-
рителей, использованных при моделировании. 
Теоретические полосы, построенные путем уши-
рения линейчатых переходов функциями Гаусса, 
а  также экспериментальный спектр поглощения 
представлены на рис. 5. Орбитали, участвующие 
в  указанных электронных переходах на  приме-
ре соединения I в ацетонитриле в конформации 
TTC, представлены на рис. 6.

Для корректировки положения красящей по-
лосы была разработана шкалирующая регрессия 
на основе экспериментально полученных и рас-
четных данных. Так как для моделирования ос-
новной полосы поглощения открытого дифиль-
ного спиронафтоксазина нет необходимости 
детального изучения структуры и  электронного 
строения всех возможных конформаций, впол-
не достаточным является моделирование только 
одной геометрии и  подбор эмпирических пара-
метров для нее. В силу того, что для всех соеди-
нений во всех растворителях форма ТТС является 
наиболее устойчивой, а энергии ее вертикальных 
электронных переходов, рассчитанные с  помо-
щью TD-DFT, больше всего соответствуют экс-
периментальным данным, регрессию рассчиты-
вали именно для этой структуры. Полученное 
уравнение имеет вид

	 y x x n= − + + + ⋅ +−2 13267 1 18213 0 29782 6 83305 10 0 4861 2
4. . . . .ε 	  

	y x x n= − + + + ⋅ +−2 13267 1 18213 0 29782 6 83305 10 0 4861 2
4. . . . .ε ,	

где х1  – расчетная энергия электронного пере-
хода с большей длиной волны (эВ), х2 – энергия 
перехода с меньшей длиной волны (эВ), ε – ди-
электрическая проницаемость среды, n  – пока-
затель преломления среды, у – скорректирован-
ное расчетное положение максимума полосы 

Таблица 2. Положение полосы поглощения открытой мероцианиновой формы исследованных соединений. 
Соединение IV не растворимо в ацетоне и метаноле

Соединение
Растворитель

Ацетонитрил Ацетон Хлороформ Метанол
I 600 602 602 608
II 602 601 605 613
III 599 603 601 607
IV 611 – 619 –
V 599 597 603 608
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Рис.  5. Экспериментальный (1) и  расчетный (2) 
спектр соединения I в конформации ТТС с указани-
ем электронных переходов (вертикальные линии). 
Растворитель – ацетонитрил.
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поглощения дифильного спиронафтоксазина 
(эВ). Полученные данные сведены в табл. 3. Наи-
большее отклонение рассчитанных длин волн 
от экспериментально найденных составляет 9 нм, 
а среднее – 4 нм. Очевидно, что данный подход 
позволяет предсказывать оптические свойства 
различных производных дифильных спиронаф-
токсазинов с удовлетворительной точностью.

В связи с тем, что степень релевантности рас-
четов с помощью метода DFT недостаточна при 
введении заместителей, значительно различаю-
щихся по природе, было предложено использова-
ние многоконфигурационного метода CASSCF, 
лучше отражающего электронное распределение 
внутри молекулы. При построении активного 
пространства необходимо учитывать все электро-
ны сопряженной π-системы, а также неподелен-
ную электронную пару атома азота. В случае спи-
ронафтоксазинов это означает, что пространство 
должно включать как минимум 11 связывающих 
и  10 разрыхляющих орбиталей, а  расчет нужно 
проводить для нескольких электронных состоя-
ний. Как правило, в качестве стартовых исполь-
зуют орбитали, полученные методами без учета 
электронной корреляции, например натураль-
ные орбитали, рассчитанные методом HF/MP2. 
Следует отметить, что в  данной связке HF/MP2 
учитывается влияние динамической электронной 
корреляции на энергию системы, но сами по себе 

молекулярные орбитали (МО) получаются не-
скоррелированными. Орбитали, полученные та-
ким способом, сильно делокализованы, а  выде-
лить из них наиболее значимые для электронных 
переходов пары МО не  представляется возмож-
ным. Вследствие этого расчеты оптических ха-
рактеристик требуют учета пространства огром-
ного размера и  использования сверхресурсных 
вычислительных мощностей. 

В связи с  этим для частичного учета дина-
мической корреляции в  качестве стартовых 
орбиталей были выбраны МО, полученные са-
мосогласованием с  помощью гибридных DFT-
функционалов. Более того, в пространство были 
включены только те орбитали, которые участву-
ют в  переходах, полученных методом TD-DFT, 
для чего был проведен расчет первых 10 элек-
тронных переходов с помощью TD-DFT/B3LYP/
def2-TZVP. Затем была реализована стратегия 
последовательного увеличения количества со-
стояний и  добавления в  активное простран-
ство орбиталей, доминирующих в  электрон-
ных переходах на  более низком уровне теории 
TD -DFT. Для конформаций ТТТ и СТТ резуль-
таты CASSCF/NEVPT2 оказались недостаточ-
но релевантными, как и  данные, полученные 
методом TD-DFT без применения шкалирую-
щих регрессий. В то же время для конформаций 
СТС и ТТС рассчитанные электронные спектры 

Таблица 3. Расчетные полосы поглощения дифильных спиронафтоксазинов 

Соединение
Растворитель

Ацетонитрил Ацетон Хлороформ Метанол
I 599 602 601 602
II 605 607 606 607
III 603 606 604 606
IV 614 616 610 615
V 600 603 603 603

Рис.  6. Орбитали, участвующие в  электронных переходах основной полосы открытых спиронафтоксазинов:  
а – n-орбиталь (НЭП атома азота); б – π-связывающая орбиталь; в – π*-разрыхляющая орбиталь.

(а) (б) (в)
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совпали с  экспериментальными. При модели-
ровании оптических свойств необходимым яв-
ляется включение 4 электронных состояний: S0, 
S1, S2, и S3. Длины волн остальных электронных 
переходов лежат в  ультрафиолетовой области 
и не вносят вклад в хромофорные свойства спи-
ронафтоксазинов. Для оптимизации состояний 

использовали первые три занятые орбитали 
и низшую свободную орбиталь. Результаты рас-
четов CASSCF показывают, что основная опти-
ческая полоса представляет собой исключитель-
но π–π*-переход двойной связи N = Ar (рис. 7б 
и  7в) на  длине волны 595 нм (рис.  7а). Переход 
n–π*, показанный на рис. 7г, на  длине волны 
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Рис. 7. а – Экспериментальный (1) и расчетный (2) спектры соединения I в конформации ТТС с указанием элек-
тронных переходов (вертикальные линии); растворитель  – ацетонитрил; б – π*-орбиталь, участвующая во  всех 
переходах; в – связывающая орбиталь основного π–π*-перехода; г – несвязывающая орбиталь n–π*-перехода: д – 
связывающая орбиталь дополнительного π–π*-перехода с переносом заряда.
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676 нм, в  отличие от  рассчитанного с  помощью 
TD-DFT, имеет малую интенсивность и  фак-
тически запрещен для всех соединений в  лю-
бых растворителях. Кроме того, на длине волны 
488 нм проявляется π–π*-переход средней ин-
тенсивности, при котором занятой орбиталью 
является МО нафтоксазинового фрагмента, что 
позволяет идентифицировать такой переход как 
полосу переноса заряда (см. рис. 7д). 

Очевидно, что метод CASSCF/NEVPT2 дает 
корректное представление об  электронном 
строении спиронафтоксазинов и  электронных 
переходах в  них, и, таким образом, удовлетво-
рительно предсказывает как форму оптическо-
го спектра, так и положение полос поглощения. 
Разница между расчетными и  эксперименталь-
ными значениями длин волн поглощения спиро-
нафтоксазинов I–V в  различных растворителях 
показана на рис. 8.

Таким образом, предложенный подход по-
зволяет использовать метод CASSCF/NEVPT2 
для моделирования оптических спектров по-
глощения спиронафтоксазинов, обеспечивая 
удовлетворительное соответствие с эксперимен-
тальными данными без использования допол-
нительных эмпирических параметров, и  может 
быть реализован для любых производных спи-
ронафтоксазинов с широким набором замести-
телей в различных положениях.

ЗАКЛЮЧЕНИЕ

В  настоящей работе впервые для дифиль-
ных спиронафтоксазинов проведено кванто-
во-химическое моделирование спектральных 
свойств с помощью методов TD-DFT и CASSCF. 
Обнаружено, что в  органических растворите-
лях запрещено существование форм, в  которых 

Рис.  8. Отклонение расчетных длин волн поглощения от  экспериментальных для соединений I–V в  различных 
растворителях. 
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неподеленная пара атома азота и метиновый во-
дород находятся в цис-конформации. Установлен 
комплексный характер электронных переходов 
в видимой области спектра СНО. С помощью ме-
тода TD-DFT разработаны новые шкалирующие 
регрессии, позволяющие с  высокой точностью 
предсказывать оптические характеристики спи-
ронафтоксазинов, содержащих различные за-
местители. Показана принципиальная возмож-
ность использования многоконфигурационного 
метода CASSCF без учета эмпирических данных 
для удовлетворительного моделирования опти-
ческих спектров любых производных фотохро-
мов этого класса. Оптимальное сочетание кван-
тово-химических методов расчета спектральных 
характеристик позволяет разрабатывать новые 
предсказательные модели для прогнозирова-
ния свойств светочувствительных органических 
соединений.
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