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В работе приведены результаты исследований комбинированного процесса плазменно-фото-
каталитической деструкции водных растворов родамина Б (RhB) с высокими концентрациями 
(до 40 мг л–1) с использованием двух композитных каталитических систем, состоящих из диок-
сида титана, закрепленного на гранулах цеолита NaX, и диатомита. Нанесение покрытия TiO2 
осуществлялось гидротермальной пропиткой носителя растворами, содержащими крупнораз-
мерные гидроксокомплексы титана. Изучены сорбционные и  фотокаталитические свойства 
пропитанных гранул в статических условиях. В плазмохимическом реакторе диэлектрическо-
го барьерного разряда проведена оценка вклада сорбционно-каталитических процессов в эф-
фективность разложения RhB. Показано, что присутствие обоих типов катализаторов в плазме 
приводит к росту скорости деструкции красителя не менее чем на 20%. Максимальная эффек-
тивность разложения в плазме наблюдается при использовании катализатора TiO2/цеолит и до-
стигает 100% (2 г катализатора в объеме реактора – 25 см3, мощность разряда – 8.6 Вт/см3) при 
степени минерализации более 80%, что свидетельствует о высокой степени протекания окисли-
тельных процессов.
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ВВЕДЕНИЕ

Одним из  высокоэффективных методов 
очистки сточных вод от  органических поллю-
тантов является диэлектрический барьерный 
разряд (ДБР), уже нашедший широкое приме-
нение в  системах защиты окружающей среды 
[1–3]. Его преимуществом являются высокие 
скорости разложения загрязняющих веществ 

на  менее токсичные продукты благодаря обра-
зованию большого количества кислородсодер-
жащих активных частиц  в плазме кислорода 
(O2(a1Δg), O2(b1Σg

+), O2(A3Σu
+), O(3P), O(1D), O3, 

O–, O2
–, O2

+, O+ и  др.), способных участвовать 
в окислительных процессах [4].

Методология дальнейшего повышения эф-
фективности очистки воды с  помощью ДБР 
заключается в  сочетании плазмохимических, 
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фотокаталитических и  сорбционных методов 
очистки с  прогнозируемым синергетическим 
эффектом [5] при одновременном снижении 
энергозатрат [3, 6]. В частности, наличие в спек-
тре изучения плазмы ДБР УФ-компоненты [7] 
может существенно интенсифицировать дей-
ствие фотокаталитических систем, например, 
на основе диоксида титана [8]. Кроме того, при 
нахождении в зоне контакта с плазмой происхо-
дит непрерывная регенерация фотокатализато-
ра с образованием фотоактивных центров на его 
поверхности [9]. Ранее в  работе [3] уже была 
продемонстрирована высокая эффективность 
комбинированных процессов при подаче в зону 
горения плазмы раствора красителя родамина 
Б, содержащего фотокатализатор-сорбент в виде 
TiO2-пилларного монтмориллонита [10]. 

Следует, однако, отметить, что фотоактив-
ные материалы на  основе TiO2 получают пре-
имущественно в  виде порошков, что является 
сдерживающим фактором их практического 
применения в  сочетании с  плазмохимической 
обработкой, прежде всего, из-за уноса порошко-
образного фотокатализатора из  реакционной 
зоны реакторов ДБР проточного принципа 
функционирования. 

Одним из  вариантов решения этой пробле-
мы является использование фотокатализаторов 
в виде гранул. Получение гранул с использова-
нием различных субстратов с  развитой поверх-
ностью (например, алюмосиликатов) с  нане-
сенным фотоактивным слоем TiO2 может быть 
реализовано различными методами [11], вклю-
чая золь-гель и  электрохимическое осаждение, 
вакуумно-плазменное напыление и растворную 
пропитку в сочетании с последующей термиче-
ской обработкой. В частности, гидротермальная 
пропитка цеолитов растворами, содержащими 
крупноразмерные катионы  – продукты гидро-
лиза титана, зарекомендовала себя как эффек-
тивный метод получения фотоактивных покры-
тий [12].

Перспективными кандидатами для исходно 
гранулированного субстрата являются цеолиты 
с  высоким силикатным модулем и  диатомиты, 
которые обладают, с  одной стороны, хорошей 
сорбционной способностью, а с  другой сторо-
ны, могут способствовать эффективному разде-
лению фотоиндуцированных электронов и  ды-
рок, образующихся в  фотоактивном окрытии 
гранул [13].

Помимо подбора типа катализатора, исполь-
зуемого в  плазменно-каталитических процес-
сах, важным аспектом установок, реализующих 

совмещенные плазменно-каталитические про-
цессы, является способ размещения катализатора 
в системе: либо непосредственно в зоне плазмы 
(одностадийные/внутриплазменные реакторы), 
либо вне разрядной зоны (двухстадийные реакто-
ры). Авторы работ [14, 15] считают, что для оксид-
ных катализаторов предпочтение следует отдать 
двухстадийным реакторам, несмотря на  сниже-
ние концентрации O3 на выходе из ректора [16]. 
Однако эффективность большинства катализато-
ров выше именно при их расположении в разряд-
ной зоне, особенно в тех случаях, когда катали-
заторы обладают фотоактивными свойствами [17, 
18], что реализовано и в настоящей работе. 

Выбор в  качестве модельного органическо-
го поллютанта красителя Родамина Б (RhB, 
С28Н31ClN2O3, М = 479.02 г/моль) обусловлен 
двумя причинами. С  одной стороны,  он отно-
сится к представителям группы флуоресцентных 
красителей, хорошо растворимых в воде, устой-
чив к биоразложению и имеет высокую стабиль-
ность к действию света [19]. С другой стороны, 
RhB нашел широкое применение в текстильной 
и  пищевой промышленности [20], в  лазерной 
технологии [21], а также в качестве биомаркера 
и молекулярного зонда [22, 23], электрохимиче-
ского люминесцентного сенсибилизатора [24], 
сенсибилизатора в сочетании с оксидами метал-
лов в солнечных батареях [25]. При этом RhB – 
токсичное соединение, оказывающее раздража-
ющее действие на  слизистые оболочки и  кожу. 
Он обладает канцерогенными свойствами, 
проявляет нейротоксическое действие и оказы-
вает хроническое токсическое действие на вод-
ные организмы и  человека [26]. Наличие RhB 
в  воде даже при низких концентрациях (около 
1.0 мг л–1) делает ее непригодной для потребле-
ния человеком [27].

Таким образом, целями настоящего исследо-
вания являлись:

 1) получение новых каталитических систем 
TiO2/цеолит NaX и TiO2/диатомит с использова-
нием подхода, основанного на гидротермальной 
пропитке растворами, содержащими крупнораз-
мерные полигидроксокомплексы титана; 

2) исследование сорбционных и фотокатали-
тических свойств полученных катализаторов; 

3) применение катализаторов с  систе-
ме, реализующей ДБР, для комбинированной 
плазменно-сорбционно-фотокаталитической 
деструкции модельного красителя RhB в водных 
растворах большой концентрации (40 мг л–1) 
c  оценкой сорбционно-каталитического вклада 
в эффективность брутто-процесса разложения.
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ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление гранул с фотоактивным 
покрытием

В качестве носителей для нанесения фото-
каталитического покрытия TiO2 использовали 
коммерческий цеолит NaX (Hong Kong Chemical 
Corp., Гонконг) и  силикатный материал  – диа-
томит марки СМД Сорб. Насыпная плотность 
гранул цеолита и  диатомита составляла 0.6 
и 0.5 г/см3, а диаметр 3–4 мм и 0.4–0.8 мм соот-
ветственно. 

Пропиточные растворы, содержащие по-
лигидроксокомплексы титана, готовили при 
комнатной температуре гидролизом хлорида 
титана по методике [28]. Для этого к 6М раство-
ру HCl покапельно добавляли TiCl4 (Sigma Al-
drich) до получения растворов с концентрацией 
по Ti4+ 4.92М (граница золеобразования). Далее 
растворы разбавлялись медленным добавлени-
ем деионизованной воды до получения раство-
ров с  остаточной концентрацией по  Ti4+ 0.56М 
и подвергались старению в течение 3 ч при 20°С, 
что приводило к образованию крупноразмерных 
гидроксокомплексов титана. 

Гранулы носителя помещали во  фторопла-
стовый стакан автоклава и  заливали пропиточ-
ным раствором. Автоклавную пропитку прово-
дили в условиях изотермической выдержки при 
115°С в течение 1 ч.

После пропитки в  гидротермальных усло-
виях гранулы отделяли от  раствора фильтрова-
нием и  полученное покрытие высушивали при 
температуре 60°С в течение 6 ч. Формирование 
покрытия TiO2 на гранулах носителя завершали 
обжигом в  печи в  течение 1 ч при температуре 
550°С. Образцы гранул цеолита NaX и диатоми-
та с нанесенным фотокаталитическим покрыти-
ем TiO2 далее обозначены как NaX/TiO2 и D/TiO2 
соответственно.

Фазовый состав фотоактивного покрытия 
изучали для измельченных гранул, подвергнутых 
аналогичной процедуре пропитки, с  помощью 
рентгеновского порошкового дифрактометра 
ADANI POWDIX 600 (ЛИНЕВ АДАНИ, Бела-
русь) с использованием CuKα излучения.

Описание экспериментальных установок 
и методик

Фотокаталитическую активность NaX/TiO2 
и  D/TiO2 оценивали путем изучения скорости 
деструкции красителя RhB в  водном растворе. 

Источником УФ-излучения служила ртутная 
лампа высокого давления мощностью 250 Вт 
с максимумом излучения при 365 нм. Подробное 
описание фотокаталитического реактора дано 
в  работе [3]. В  каждом эксперименте в  раствор 
красителя RhB объемом 500 мл с концентраци-
ей 20 мг/л добавлялись фотокатализаторы NaX/
TiO2 и  D/TiO2, располагавшиеся в  один слой 
на  полимерной сетке площадью 80 см2. В  тече-
ние измерений раствор красителя постоянно пе-
ремешивался при постоянной температуре 25°C 
с продувкой воздуха. При этом выходное отвер-
стие барботера располагалось под сеткой с гра-
нулами. Измерениям кинетики фотодеструкции 
красителя предшествовал 30-минутный “тем-
ный” период для обеспечения адсорбционного 
равновесия, после чего включалась УФ лампа. 
Через определенные промежутки времени вы-
полняли отбор 8 мл пробы раствора красите-
ля и  определяли его концентрацию в  растворе 
с  помощью спектрофотометра UV-Vis U-2001 
(Hitachi, Япония), измеряя оптическую плот-
ность на длине волны, соответствующей макси-
муму спектра поглощения RhB (λmax = 554 нм; 
основная полоса поглощения, соответствую-
щая переходам n → π* групп C = N и C = O [29]). 
Предварительное облучение растворов краси-
теля в  течение часа в  отсутствие фотокатализа-
торов показало, что значимых деколорирующих 
изменений за это время не происходит. 

Изучение адсорбционного поведения RhB 
на  гранулированных фотокатализаторах про-
водили в тех же условиях, что и при исследова-
нии их фотокаталитической активности, но без 
УФ-излучения и  продувки раствора возду-
хом. Количество адсорбированного красителя 
(qt, мг/г) на  образце за  время t рассчитывали 
по уравнению

	 q
C C V

mt
t=

−( )0 ,	 (1)

где C0  и  Ct – начальная концентрация красителя 
и  его концентрация в  момент времени t (мин), 
V – объем раствора красителя, m – масса наве-
ски воздушно-сухого адсорбента.

Схема экспериментальной плазмохимиче-
ской установки представлена на  рис.  1. Ее ос-
новной элемент  – реактор диэлектрического 
барьерного разряда (рис.  2) с  объемом разряд-
ной зоны 25 см3. В качестве плазмообразующего 
газа использовался технический кислород, рас-
ход которого во всех опытах составлял 8.33 мл/с. 
Катализатор размещался в  нижней части 
разрядной зоны на  специальной подложке, 
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представляющей собой фторопластовое коль-
цо, способное пропускать раствор воды, содер-
жащей краситель, а также газовые потоки через 
специально проделанные отверстия, диаметр 
которых достаточно мал, чтобы предотвратить 
унос вместе с  потоком раствора катализатора 
из  системы. Значения первичного напряжения 
определялось с  помощью вольтметра марки Д 
5015. Ток (мА) и напряжение (кВ) разряда кон-
тролировали цифровым двухканальным осцил-
лографом GW Instek GDS-2072 (Instek, Тайвань) 
[30].

Время контакта раствора красителя с  раз-
рядной зоной реактора (τ, с) рассчитывалось 
по формуле 

	 τ π= ⋅ ⋅D h L

Q
,	 (2), 

где D – диаметр внутреннего электрода, см; h – 
толщина слоя жидкости при ламинарном тече-
нии в поле силы тяжести, рассчитываемая в со-
ответствии с работой [30], см2; L – длина зоны 
разряда (8 см), Q – расход жидкости, см3/с.

Основные экспериментальные параметры 
представлены в табл. 1.

Величина рН исследуемых растворов в  ходе 
экспериментов до  и  после обработки опреде-
лялась с  помощью pH-метра (рН-150МИ, NV-
LAB, Россия).

Определение степени минерализации RhB 
в  растворе проводили по  изменению общей 
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Рис.  1. Схема экспериментальной установки: 
1  – внутренний электрод; 2  – внешний электрод; 
3  – стеклянная трубка; 4  – вход газа (кислород); 
5  – выход газа; 6  – насос; 7  – раствор красителя; 
8 – мешалка магнитная; 9 – обработанный раствор.
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Рис.  2. Схема реактора с  коаксиальным распо-
ложением электродов: 1  – внутренний электрод; 
2, 3 – тефлоновые вставки; 4 – внешний электрод; 
5  – стеклянная трубка (диэлектрический барьер); 
6 – зона горения плазмы; 7 – выход газа; 8 – вход 
газа; 9  – резистор 100 Ом; 10  – цифровой двухка-
нальный осциллограф; 11 – блок питания; 12 – слой 
катализатора.

Таблица 1. Параметры эксперимента

Параметр Значение Единица 
измерения

Концентрация красителя 
(родамин Б) 40 мг/л

Частота 800 Гц
Мощность, вкладываемая 
в разряд 8.6 Вт/см3

Сила тока 13 мА
Напряжение 16.5 кВ
Расход плазмообразующего 
газа (О2)

0.5 л/мин

Масса катализатора 1000 мг
Время контакта 0.39–5.90 с



	 СОРБЦИОННО-КАТАЛИТИЧЕСКОЕ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ДЕСТРУКЦИИ КРАСИТЕЛЯ	 137

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ  том 61  № 2  2025

концентрации углерода в  модельном раство-
ре до  и  после обработки. Для этого оценивали 
показатель химического потребления кислоро-
да – количество кислорода в воде, необходимое 
для полного окисления органических веществ, 
содержащихся в образце, до СО2. Измерение ос-
новано на обработке пробы воды серной кисло-
той и дихроматом калия при температуре 150°C 
в присутствии катализатора окисления (сульфата 
серебра с добавлением сульфата ртути (II)) и из-
мерении оптической плотности раствора (флуо-
риметр Флюорат-02М, Люмэкс, Россия) [31].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис.  3 приведены кинетические кривые 
сорбции RhB гранулами NaX/TiO2 и  D/TiO2 
в  “темновой” период и  фотокаталитической 
деструкции красителя. В  отличие от  NaX/TiO2 
в  случае D/TiO2 сорбция достигает равновес-
ных значений существенно быстрее, при этом 
NaX/TiO2 демонстрирует более высокую сор-
бционную способность, хотя следует принять 
во  внимание, что оцениваемая суммарная пло-
щадь внешней поверхности гранул NaX/TiO2 
в реакторе примерно в 2.4 раза больше площади 
гранул D/TiO2 за счет их размера при одинако-
вой весовой дозировке. 

Наблюдается и существенное различие в фо-
тоактивности гранул. В  случае D/TiO2 полное 
обесцвечивание раствора красителя происходит 

в течение 45 мин обработки, а при использова-
нии NaX/TiO2 максимальная эффективность 
деструкции составляет лишь 40% даже при уве-
личении времени обработки до  90 мин. Этот 
факт, с  одной стороны, может быть объяснен 
отличием фазового состава активной фазы ката-
лизатора – для модельных порошковых компо-
зитов NaX/TiO2 и D/TiO2 соотношение фаз ана-
таз/рутил составляет соответственно 97:3 и 62:38 
(см. рис.  4). Известно, что благоприятным для 
высокой фотоактивности материалов на  осно-
ве диоксида титана, получаемого по  методике 
гидротермальной пропитки, является достаточ-
но высокая доля рутила по отношению к аната-
зу (30–40%), что способствует эффективному 
разделению индуцируемых УФ-квантами элек-
трон-дырочных пар на границе раздела образо-
ванных гетероструктур анатаза и рутила [10].

С другой стороны, важным фактором при 
формировании слоя TiO2 на поверхности гранул 
при их пропитке в  растворе положительно за-
ряженных гидроксокомплексов титана является 
ζ-потенциал минеральных матриц. Авторами 
работ [33] и  [34] для цеолита NaX и  диатомита 
соответственно детально изучено влияние па-
раметра pH среды на их ζ-потенциал. Из резуль-
татов этих работ вытекает, что диатомит в отли-
чие от цеолита NaX даже в сильно кислой среде, 
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Рис. 3. Кинетические кривые сорбции и фотоката-
литической деструкции под действием УФ-излуче-
ния RhB в присутствии гранулированных компози-
тов: NaX/TiO2 (1 – деструкция, 3 – сорбция), D/TiO2 
(2 – деструкция, 4 – сорбция).
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Рис.  4. Дифрактограммы порошковых композитов 
NaX/TiO2 и D/TiO2; для анатаза и рутила приведены 
данные из работы [32].
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которая необходима как условие устойчивого 
существования гидроксокомплексов титана, со-
храняет отрицательные значения ζ-потенциала. 
Это свойство диатомита позволяет обеспечить 
более эффективную пропитку гранул диатомита 
по  сравнению с  NaX и  сформировать поверх-
ностный слой TiO2 с более высокой фотоактив-
ностью. 

UV-Vis спектры поглощения растворов RhB 
в  процессе их обработки в  разряде показаны 
на рис. 5 для четырех различных вариантов про-
ведения эксперимента: без катализатора, с  ка-
тализатором D/TiO2 (1 г в объеме реактора) и с 
катализатором NaX/TiO2 (1 и 2 г в объеме реакто-
ра). Их анализ показывает, что в диапазоне длин 
волн 340–370 нм появляются дополнительные 
полосы, интенсивность которых незначительно 

увеличивается с  ростом времени обработки 
раствора красителя в  плазме. Эти полосы мо-
гут быть характерны для продуктов деструкции 
с меньшей молекулярной массой [35], что указы-
вает на  протекание деструктивных окислитель-
ных процессов, приводящих к  разрыву арома-
тических колец красителя и образованию более 
простых органических соединений, например 
карбоновых кислот, что подтверждается измене-
нием величины pH растворов после обработки 
(см. рис. 6). 

Вместе с  тем наличие катализатора в  раз-
рядной зоне приводит к  более значительному 
снижению pH растворов (см. рис. 6), вероятно, 
это связано с тем, что катализатор позволяет за-
держивать на  его поверхности молекулы RhB, 
что увеличивает вероятность их взаимодействия 
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Рис. 5. Изменение UV-Vis-спектров в процессе обработки растворов, содержащих родамин Б, от времени контакта с зо-
ной разряда: а – без катализатора, б – в присутствии D/TiO2 (1 г), в – в присутствии NaX/TiO2 (1 г), г – NaX/TiO2 (2 г).
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с активными частицами и способствует образо-
ванию карбоновых кислот.

Кинетические кривые деструкции RhB 
и  эффективность обесцвечивания раство-
ра представлены на рис. 7 и 8 соответственно. 
Из рис.  8 следует, что введение катализатора 
в  разрядный объем существенно увеличивает 
эффективность обесцвечивания раствора кра-
сителя; при этом увеличение массы используе-
мого катализатора в случае NaX/TiO2, который 

демонстрирует несколько большую эффектив-
ность по сравнению с D/TiO2, приводит к уве-
личению эффективности обесцвечивания рас-
твора с 92.4 до 100%. 

Эффективные константы скорости деструк-
ции K получены c использованием модели псев-
до-первого порядка (рис. 7)

	 С С K= ⋅ − ⋅( )0 exp τ 	 (3)

и представлены в табл. 2. 
Сравнение величин K свидетельствует о ро-

сте скорости деструкции при внесении ис-
следуемых катализаторов в  плазму; при этом 
наибольшая константа скорости деструкции со-
ответствует плазменно-каталитической системе 
с D/TiO2 и составляет 0.55 ± 0.04 с–1.

Таблица 2. Эффективные константы скорости K 
и  энергетическая эффективность Y50% процесса раз-
ложения RhB

Метод очистки K, с–1 Y50%, г/
(кВт·ч)

ДБР 0.33 ± 0.05 0.91
ДБР в присутствии  
NaX/ TiO2 (1 г) 0.40 ± 0.05 1.11

ДБР в присутствии  
D/TiO2 (1 г) 0.55 ± 0.04 1.04

ДБР в присутствии  
NaX/ TiO2 (2 г) 0.44 ± 0.06 1.22
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Рис.  6. Зависимость pH-обработанных растворов 
RhB от времени контакта с зоной разряда: 1 – до об-
работки, 2 – после обработки без катализатора, 3 – 
после обработки в присутствии катализатора D/TiO2.
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Рис. 7. Зависимость концентрации RhB от времени 
контакта с  зоной разряда: без катализатора (1), 1  г 
D/TiO2 (2), 1 г NaX/TiO2 (3), 2 г NaX/TiO2 (4).

Рис.  8. Зависимость эффективности обесцвечива-
ния RhB от  времени контакта с  зоной разряда: без 
катализатора (4), 1 г D/TiO2 (3), 1 г NaX/TiO2 (2), 2 г 
NaX/TiO2 (1).
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Такой результат коррелирует с более высокой 
фотоактивностью D/TiO2 по сравнению с NaX/
TiO2 (см. рис. 3). При этом меньшая эффектив-
ность удаления красителя в случае D/TiO2, веро-
ятно, связана с более низкой сорбционной спо-
собностью данного катализатора по сравнению 
с  NaX/TiO2. Эти результаты, по  нашему пред-
положению, свидетельствуют о  конкуренции 
вкладов сорбционного и  фотокаталитического 
процессов в брутто-плазмохимическом процес-
се с участием катализатора.

В табл. 2 также представлены значения энер-
гетической эффективности Y50% (г/(кВт·ч)) про-
цесса деструкции RhB, рассчитанные по уравне-
нию [36]

	 Y
C V

P t50
0

100% �
� �
� �

�
, 	 (4)

где С0  – начальная концентрация красителя 
в растворе, г/л; V – объем обрабатываемого рас-
твора, л; α  – эффективность деструкции RhB, 
%; P – мощность, затрачиваемая на процесс де-
струкции, кВт; t – время обработки, ч. 

Как видно из табл. 2, величина Y50% повыша-
ется при введении катализатора в  плазму; при-
чем увеличение вдвое массы катализатора в слу-
чае NaX/TiO2 приводит к  увеличению как Y50% 
(с 1.11 до 1.22 г (кВт·ч)–1), так и эффективности 
обесцвечивания раствора (с 92.4 до 100%). 

Выборочно для системы “плазма–катали-
затор NaX/TiO2”, продемонстрировавшей при 
одинаковой загрузке (1 г) более высокую степень 
разложения красителя по  сравнению с  D/TiO2, 
нами определена степень минерализации, ко-
торая достигает величины 80%. Такой результат 
подтверждает спектральные данные (см. рис. 5), 
что процесс разложения исходного соединения 
протекает с  образованием органических соеди-
нений с  меньшей молекулярной массой (таких 
как спирты, альдегиды и карбоновые кислоты), 
однако вклад данных соединений в  общий ба-
ланс по  углероду незначителен, а  основными 
соединениями, образующимися в  ходе окисли-
тельных реакций, являются диоксид углерода 
и вода. 

ЗАКЛЮЧЕНИЕ

Полученные результаты исследований ком-
бинированного процесса плазменно-сорбци-
онно-фотокаталитической деструкции водных 
растворов родамина Б с высокими концентраци-
ями (до 40 мг л–1) с использованием двух типов 
каталитических систем, состоящих из диоксида 

титана, закрепленного на гранулах цеолита NaX, 
и диатомита показали, что наличие и того, и дру-
гого гранулированного катализатора в  плазме 
повышает скорость деструкции.

Показано, что присутствие катализатора 
приводит к росту скорости деструкции родами-
на Б в плазме более чем на 20%. Высокая эффек-
тивность деструкции красителя (до 100%) за ма-
лое время нахождения в плазме с катализатором 
и  существенная степень минерализации (более 
80%) свидетельствуют о высокой скорости про-
текания окислительных процессов в  комбини-
рованной системе. 

Таким образом, применение гранул с  фо-
тоактивным покрытием в  реакторе ДБР можно 
считать перспективным методическим подходом 
для комбинированной плазменно-сорбцион-
но-фотокаталитической деструкции красителей 
в  водных растворах. Материаловедческие во-
просы в данной методологии выходят на первый 
план и заключаются в варьировании фотоактив-
ных и  сорбционных свойств покрытий на  гра-
нулах, совершенствовании способов нанесения 
покрытий, а также изучении эффективности ге-
нерации активных частиц и их типов на границе 
раздела твердое тело–плазма.
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