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лов в  качестве катионизирующих агентов. Метод электрораспылительной ионизации был ис-
пользован для получения и исследования кластерных соединений аминокислот с ионами меди. 
Обнаружено, что полярные аминокислоты в  присутствии ионов меди склонны к  образованию 
полимолекулярных ассоциатов. В  полярных аминокислотах также активно проходят процессы 
фрагментации, такие как декарбоксилирование и  деаминирование радикальных аминогрупп. 
Методами масс-спектрометрии высокого разрешения показано, что при ионизации лизина 
происходит замыкание радикала аминокислоты в  метастабильный цикл с  образованием иона 
NH4

 + COOH.
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ВВЕДЕНИЕ

Аминокислоты находят широкое приме-
нение в различных областях, в  том числе уча-
ствуют в  биосинтезе природных пептидов 
и  белков. Аминокислоты, пептиды и  их про-
изводные обладают различной биологической 
активностью, отличаются низкой термоста-
бильностью. Как известно, аминокислоты, 
участвующие в образовании белков (протеино-
генные), классифицируют по  разным призна-
кам. По положению изоэлектрической точки 
различают кислые, основные и  нейтральные 
аминокислоты, по  строению боковой цепи  – 
алифатические, ароматические и гетероцикли-
ческие. Существует и  классификация амино-
кислот по полярности боковой цепи: полярные 

и  неполярные аминокислоты. К  неполярным 
относятся аминокислоты, содержащие угле-
водороды в  качестве радикала (аланин, ва-
лин, лейцин, изолейцин, метионин, пролин, 
фенилаланин, триптофан). Эти аминокисло-
ты гидрофобны и имеют незаряженный ради-
кал. При сближении в пространстве радикалы 
этих аминокислот обеспечивают гидрофобное 
взаимодействие. Полярные, гидрофильные, 
незаряженные аминокислоты (глицин, трео-
нин, цистеин, тирозин, серин, аспарагин, глу-
тамин) содержат полярные функциональные 
группы: гидроксильную, сульфгидрильную 
и амидогруппу. При сближении в пространстве 
их радикалы образуют водородные связи. Кис-
лые аминокислоты имеют отрицательный за-
ряд при рН 7.0 (аспарагиновая и глутаминовая 
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кислоты). Основные аминокислоты (аргинин, 
гистидин, лизин) положительно заряжены при 
рН 7.0 [1].

Большое влияние на структурные особен-
ности аминокислот, олигопептидов и  белков 
оказывают водородные связи. Например, 
стабильность белков определяется образова-
нием водородных связей N–H∙∙∙О. Элементы 
вторичной структуры (α-спирали, β-склад-
ки) в  молекулах белков стабилизированы 
водородными связями. Наличие в  боковом 
радикале функциональных групп (сульфги-
дрильная –SH, карбаминовая H2N–C( = O)–, 
гидроксильная HO–, аминогруппа H2N–, 
карбоксильная HOOC–) оказывает влияние 
не  только при формировании вторичной, 
третичной и  четвертичной структур молеку-
лы белка, но и на ее биологические функции. 
При различных значениях рН в водной среде 
эти группы отвечают за формирование элек-
трических зарядов белковой молекулы, ее 
растворимость и  другие физико-химические 
свойства [2]. 

Ряд работ [3, 4] связан с изучением роли во-
дородной связи в пептидах и белках и основан 
на сочетании экспериментальных и расчетных 
методов. В работе [3] использовали комплекс-
ный подход для оценки относительных длин 
водородных связей, включающих фосфори-
лированные аминокислотные боковые цепи 
в молекулах серина и аспарагина, с использо-
ванием акцепторов  – метилфосфата, ацетил-
фосфата и общих доноров – аргинина, лизина 
и амидной группы. Также показано, что арги-
нин проявляет способность к  более сильному 
солевому связыванию с фосфорилированными 
боковыми цепями, чем лизин. 

Значение аминокислот в  жизнедеятельно-
сти живых организмов очень велико. Поляр-
ные аминокислоты увеличивают раствори-
мость пептидов и  белков  в водных системах 
благодаря тому, что боковые группы способны 
образовывать водородные связи с водой. Кро-
ме того, аминокислоты участвуют во  взаимо-
действиях белок–белок, ферментативных ре-
акциях и связывании лигандов. Многие белки 
обладают металлосвязывающими центрами, 
содержащими остатки полярных аминокислот 
(аспарагиновой или глутаминовой кислот). 

Методы масс-спектрометрии эффективно 
применяют при изучении ионизации и  кла-
стерообразования аминокислот и  пепти-
дов в  сочетании с  хроматографическими ме-
тодами разделения. Активно используют 

поверхностно-активированную лазерную 
десорбцию/ионизацию (ПАЛДИ) и  метод 
электрораспылительной ионизации (ЭРИ). 
Известен ряд исследований по  анализу и  воз-
можностям взаимодействия аминокислот 
и  пептидов с  ионами двухвалентных металлов 
Cu и Zn методами ПАЛДИ и ЭРИ [5–8]. В об-
зоре [9] авторы демонстрируют возможности 
метода масс-спектрометрии ЭРИ в исследова-
нии нековалентных взаимодействий металл–
пептид и многогранность его применения. 

В работах [10, 11] авторы исследовали спо-
собность аминокислот и  пептидов образовы-
вать кластерные соединения различного типа 
и  состава при ионизации методами ПАЛДИ 
и  ЭРИ. Продемонстрировано преимущество 
электрораспылительной ионизации, обуслов-
ленное высокой скоростью, чувствительно-
стью анализа и возможностью проведения тан-
демной масс-спектрометрии. 

В данной статье рассмотрены возможности 
масс-спектрометрического исследования по-
лярных аминокислот в  присутствии солей ме-
таллов. Показано, что в присутствии солей меди 
происходит агрегация и  распад аминикислот, 
причем продукты распада также способны об-
разовывать кластерные соединения с заряжен-
ным центром в атоме металла. Эффективность 
образования кластеров зависит от  структуры 
аминокислот, в  том числе наличия боковых 
радикалов и полярности соединений. В работе 
использовали набор аминокислот с различной 
природой заместителей и  структурой: аспара-
гин, аспарагиновую кислоту, глутамин, глута-
миновую кислоту, аргинин моногидрохлорид, 
гистидин моногидрохлорид, лизин моноги-
дрохлорид.

ОБОРУДОВАНИЕ И МЕТОДЫ 
ИССЛЕДОВАНИЯ

Эксперимент проводили на  масс-спектро-
метре Bruker Maxis Impact с  системой масс-а-
нализаторов Q-TOF. Условия проведения экс-
перимента: скорость потока раствора образца 
составляла 0.25 мл/мин, напряжение на капил-
ляре – 4500 В, на скиммере – 500 В, скорость 
потока газа-распылителя  – 4.0 л/мин, давле-
ние – 1.4 бар. В работе использовали аминокис-
лоты фирмы “Merck” (США) – аспарагин, ас-
парагиновую кислоту, глутамин, глутаминовую 
кислоту, аргинин моногидрохлорид, гистидин 
моногидрохлорид, лизин моногидрохлорид. 
Чистота всех соединений составляет ≥98%. 
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МС- и  МС/МС-спектры были получены 
в  положительных ионах и  отрицательных ио-
нах. Энергия распада в  МС/МС-эксперименте 
подбиралась в диапазоне от 10 до 70 эВ с шагом 
в 5 эВ. 

В качестве объектов исследования выбра-
ны аминокислоты с  различными радикалами 
боковой цепи: полярные, гидрофильные, не-
заряженные (аспарагин и  глутамин) c амидной 
группой в радикале, полярные отрицательно за-
ряженные аминокислоты (аспарагиновая и глу-
таминовая кислоты), положительно заряженные 
основные аминокислоты (аргинин, гистидин, 
лизин). Растворы аминокислот в концентрации 
0.4 мг/мл ацетонитрил/вода (v/v = 50/50) сме-
шивали с раствором соли CuSO4·8H2O в концен-
трации 40 мг в 10 мл. Полученные растворы ана-
лизировали методом электрораспылительной 
ионизации. Для определения соединений под-
бирали брутто-формулы по  точной массе иона 
и  фрагментировали молекулы методом тандем-
ной масс-спектрометрии для восстановления 
структуры по осколочным ионам. 

ОБСУЖДЕНИЕ И РЕЗУЛЬТАТЫ

В работе проведено масс-спектрометри-
ческое исследование электрораспылительной 

ионизации полярных заряженных и незаряжен-
ных аминокислот с различными радикалами бо-
ковой цепи в присутствии солей меди. Наличие 
ионов меди в  растворе инициирует агрегацию 
молекул аминокислот с образованием ряда кла-
стеров различного состава. 

Рассмотрим ионизацию полярных, незаря-
женных аминокислот (аспарагин и  глутамин), 
содержащих дополнительную аминогруппу в  ра-
дикале. На рис.  1 и  2 приведены масс-спектры 
ЭРИ этих аминокислот в присутствии солей меди. 
В  обоих масс-спектрах доминирует молекуляр-
ный ион аминокислот М + H+. Для молекулы 
глутамина (с молекулярной массой 146 Да) полу-
чен кластер М + Cu+. Кроме того, в полученном 
масс-спектре присутствуют декарбоксилирован-
ный ион М–СООН и  высокоинтенсивный кла-
стерный ион М–СООН + Cu+ аминокислоты. 
Из представленных данных видно, что для ами-
нокислот в  присутствии солей меди характерно 
декарбоксилирование протонированного иона. 
В  масс-спектре глутамина с  добавлением солей 
меди (рис. 1) обнаружен кластерный ион состава 
М + СООCu+. Это позволяет предположить, что 
помимо декарбоксилирования в  процессе иони-
зации аминокислот может происходить и присое-
динение карбоксильной группы и иона меди. Так-
же в масс-спектре ЭРИ глутамина с добавлением 
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Рис. 1. Масс-спектр ЭРИ глутамина с добавлением раствора соли CuSO4·8H2O.
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раствора соли меди идентифицирован ион M–
NH+ (с массой 130 Да), то есть наблюдается деами-
нирование аминокислоты и затем декарбоксили-
рование с образованием иона M–NH+–СООН (с 
массой 84 Да). В масс-спектре аспарагина в при-
сутствии солей меди преобладают молекулярный 
ион, декарбоксилированный ион аминокислоты 
М–СООН и  кластерный ион М–СООН + Cu. 
Таким образом, можно отметить, что ионизация 
глутамина и аспарагина в присутствии ионов меди 
протекает по схожим механизмам, что, вероятно, 
обусловлено схожей структурой этих соединений. 
Следует отметить, что при активном распаде моле-
кул аминокислот процессы кластерообразования 
происходят с участием полярных фрагментов мо-
лекул, таких как амино- и карбоксильные группы. 
Также процесс деаминирования, происходящий 
в  молекуле глутамина, совершенно нехаракте-
рен для аспарагина. Учитывая, что аминокисло-
ты являются гомологами, можно утверждать, что 
на стабилизацию заряда в деаминированной ами-
нокислоте значительно влияет длина углеродной 
цепи, которая позволяет размазывать заряд иона 
и стабилизировать его в условиях ионизации.

Теперь перейдем к  особенностям иони-
зации полярных отрицательно заряженных 
аминокислот (аспарагиновая и  глутаминовая 
аминокислоты). В  масс-спектре глутаминовой 
аминокислоты (рис.  3) с  добавлением раство-
ра соли меди обнаружены высокоинтенсивные 
молекулярный ион М + H+, кластерный ионы 
М–СООН + Cu+ и  М + Cu+ небольшой ин-
тенсивности и  кластерный ион M + СООCu+. 
В  масс-спектре выявлены пики, соответствую-
щие ионам М + SO4

+, что свидетельствует 
о  присоединении сульфатной группы. Также 
в  масс-спектре глутаминовой аминокисло-
ты следует отметить и  образование крупно-
го кластерного иона М–СООН + 2Cu++Н2 О. 
Для ионизации аспарагиновой аминокислоты 
в  присутствии солей меди характерно наличие 
в  масс-спектре высокоинтенсивного молеку-
лярного иона М + Н+, декарбоксилированного 
иона аминокислоты М–СООН и  кластерного 
иона M–2СООН + Cu+ (рис.  4). Из представ-
ленных данных видно, что для ионизации по-
лярных аминокислот так же, как для глутамина 
и аспарагина, характерно декарбоксилирование 
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Рис. 3. Масс-спектр ЭРИ глутаминовой аминокислоты с добавлением раствора соли CuSO4·8H2O.
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с  последующим присоединением иона меди. 
Учитывая значительную полярность амино-
кислот, для них характерно проявление свойств 
цвиттер-ионов, которые образуют ассоциаты 
не  только с  медью, но  и  с ее противоионом. 
Также следует отметить, что для аспарагиновой 
аминокислоты характерно образование дважды 
декарбоксилированного иона за  счет перехода 
заряда на  аминогруппу в  α-положении. В  глу-
таминовой аминокислоте такой ион малостаби-
лен из-за длинной углеродной цепи. 

Ионизация положительно заряженных ос-
новных аминокислот в  растворе солей меди 
отличается образованием крупных кластеров 
различного состава. В  данной работе в  каче-
стве примера приведен масс-спектр гистидина 
в  присутствии солей меди (рис.  5). В  получен-
ном масс-спектре помимо высокоинтенсивных 
молекулярного иона, кластерного иона М + Cu+ 

и  М–СООН + Cu+ выявлены крупные класте-
ры аминокислоты следующего состава: кластер 
(М + Cu+) + М–СООН + Cu+ с  молекулярной 
массой 388.9 Да, кластеры 2М + 2Cu+ + SO4 
с  молекулярной массой 530.9 Да и  кластер 
4М + 2Cu + с молекулярной массой 748.9 Да. 
Этот составной ион является продуктом взаимо-
действия молекулы аминокислоты с  собствен-
ным фрагментным ионом.

Для исследования механизма кластерообразо-
вания был проведен тандемный MS/MS-анализ 
по крупным кластерным ионам 388.9, 530.9, 748.9 
(рис. 6 и 7). Из представленных данных видно, что 
ион 748.9 распадается на ионы 595.8 Да, что соот-
ветствует М + 2Cu+–М + Н+, 549.8 Да, который 
образует кластер 4М + 2Cu+–М–СООН и  не-
большие кластерные ионы 433.9 Да (2М + 2Cu+), 
молекулярный ион аминокислоты (156 Да) 
и  кластерный ион гистидина с  медью М + Cu+ 
(218  Да). Таким образом, MS/MS-анализ под-
тверждает состав полученного кластерного иона 
с  массой 748.9  Да и  демонстрирует способно-
сти молекулы гистидина в  присутствии солей 
меди образовывать кластеры различного состава 
от  небольших кластеров М + Cu+ до  кластеров 
4М + 2Cu+–М–СООН и  2М + 2Cu+. На рис.  7 
приведен MS/MS-спектр по  530.9 и  388.9 ионам 
гистидина с  добавлением раствора соли. Ион 
530.9 дает в  своем распаде высокоинтенсивные 
пики иона с массой 388.9 и иона с массой 251.9 Да, 
соответствующего М–СООН + Cu++CuО. В этом 
масс-спектре также присутствуют кластерный 
ион аминокислоты и  декарбоксилированные 
кластерные ионы с  медью. В  MS/MS-спектре 
по иону 388.9 Да были получены пики декарбок-
силированного иона аминокислоты и  кластера 
аминокислоты с медью состава М–СООН + Cu+. 
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MS/MS-анализ спектров гистидина с  добавле-
нием солей меди позволил выявить возможные 
пути фрагментации аминокислоты и кластерных 
ионов. Схема образования крупного кластера ги-
стидина, состоящего из  двух молекул аминокис-
лоты и солей меди, М + Cu+ + М–СООН + Cu+, 
приведена на рис. 8. Образование подобных кла-
стеров, димеров и  тетрамеров гистидина с  со-
лями меди, вероятно, объясняется структурой 
аминокислоты  – наличием пятичленного цикла 
с аминогруппой в радикале, который в сочетании 
с атомом меди может проявлять комплексообра-
зующие свойства, как было показано в работе [12].

В масс-спектре ЭРИ аргинина (рис. 9) с добав-
лением солей меди получены высокоинтенсив-
ные молекулярные ионы аминокислоты, декар-
боксилированный ион М–СООН и  кластерный 
ион М–СООН + Cu+. Перейдем к рассмотрению 
особенностей ионизации аминокислоты лизина 

в присутствии солей меди (рис. 10). В масс-спектре 
идентифицированы высокоинтенсивный молеку-
лярный ион, кластерные ионы М–СООН + Cu+ 
и  NH4COOH + Cu+. Из представленных данных 
видно, что активно происходят процессы декар-
боксилирования и деаминирования лизина в рас-
творе соли меди и образование кластерных ионов. 
Показано, что молекулы основных аминокислот 
в присутствии солей меди способны образовывать 
крупные кластеры, включающие до  2-х, 4-х мо-
лекул с  последовательным присоединением кла-
стера М + Cu+. Особо следует отметить нехарак-
терное для других аминокислот образование иона 
NH4COOH и его ассоциатов. Учитывая малую ве-
роятность столкновения отдельных амино- и кар-
боксигрупп, следует признать, что ионы являются 
свидетельством образования цикла из углеродной 
цепи лизина с концами, замыкающимися по кар-
боксильной и аминогруппе (рис. 11). 
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ЗАКЛЮЧЕНИЕ 

Ионизация полярных аминокислот методом 
ЭРИ характеризуется образованием протониро-
ванных молекулярных ионов и крупных кластер-
ных ионов, катионированных солями меди. Тан-
демная масс-спектрометрия показала, что вокруг 
одного заряженного центра металла может ассо-
циироваться до 2-х или 4-х молекул аминокислот, 
в  том числе декарбоксилированных. Кроме того, 
получены сложные кластеры, состоящие из  двух 
молекул аминокислот, координированных двумя 
заряженными центрами меди. При использова-
нии масс-спектрометрии ЭРИ образуется широ-
кий ряд кластеров полярных аминокислот различ-
ного состава. MS/MS-спектры, полученные для 

гистидина, позволили предположить возможные 
пути фрагментации аминокислоты и  их класте-
ров с солями меди. Помимо присоединения солей 
меди к молекулярным ионам аминокислот проис-
ходит их декарбокисирование и  деаминирование 
при ионизации. Тандемная масс-спектрометрия 
крупных кластерных ионов показала, что образо-
вание полимолекулярных ассоциатов идет по ком-
плексообразующему механизму, как и  в случае 
с  пептидами. Установлено, что геометрия соеди-
нений оказывает влияние на образование класте-
ров, при этом важным фактором является наличие 
нескольких аминогрупп или пятичленного цик-
ла в  структуре аминокислоты. Обнаружено, что 
полярные аминокислоты в  слабой степени про-
являют свойства цвиттер-ионов. Также впервые 
экспериментально показано, что аминокислоты 
с  длинной углеродной цепью (не менее 5 атомов 
углерода) имеют стерические возможности для об-
разования метастабильного цикла за счет сближе-
ния карбоксильной и аминогруппы радикала.

В работе показано, что использование возмож-
ностей масс-спектрометрии высокого разрешения 
в  сочетании с  источниками “мягкой” ионизации 
открывает широкие перспективы для изучения ме-
тастабильных состояний молекул в неравновесных 
состояниях и получения углубленных знаний о фи-
зико-химических свойствах аминокислот и других 
биологически активных соединений.
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Рис. 11. Образование метастабильного шестичлен-
ного цикла лизина с выбросом карбоксильной груп-
пы и радикальной аминогруппы.
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