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В настоящей работе при магнетронном распылении мишеней (MoTaNbZrHf)SiB и SiBC были по-
лучены: однослойные (MoTaNbZrHf)-Si-B, двух- и  многослойные (MoTaNbZrHf)-Si-B/Si-B-C, 
а также нанокомпозитные покрытия (MoTaNbZrHf)-Si-B-C. Особое внимание было уделено ис-
следованию влияния повышенного содержания кремния на структуру и жаростойкость разрабо-
танных покрытий. Результаты показали, что однослойные и нанокомпозитные покрытия обладают 
однородной структурой с равномерным распределением элементов по толщине. Двух- и много-
слойные покрытия содержали слои (MoTaNbZrHf)-Si-B/Si-B-C толщиной 9.1/3.9 и  1.7/0.6  мкм 
соответственно. Введение в  состав покрытий (MoTaNbZrHf)-Si-B дополнительных кремний-
содержащих фаз привело к  снижению удельного изменения массы с  –3.1 до  0.15–0.20  мг/см2 

при температуре 1000°С. Отжиги при температуре 1500°С показали, что двухслойные покрытия 
(MoTaNbZrHf)-Si-B/Si-B-C обладают минимальными толщиной оксидного слоя 9.2 мкм и удель-
ной потерей массы 0.95 мг/см2, что в 1.5 и 1.8 раза ниже значений, полученных для однослойного 
покрытия (MoTaNbZrHf)-Si-B. При 1600°С однослойное покрытие (MoTaNbZrHf)-Si-B полно-
стью окислялись, в  то время как двух- и  многослойное покрытия (MoTaNbZrHf)-Si-B/Si-B-C 
фрагментарно сохранялись, что связано с высоким содержанием кремния в их составе. 

Ключевые слова: покрытия (MoTaNbZrHf)-Si-B, жаростойкость, высокое содержание кремния, 
магнетронное распыление
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ВВЕДЕНИЕ

В области материаловедения в  настоящее 
время повышенное внимание уделяется иссле-
дованию высокоэнтропийных сплавов (ВЭС 
или HEA, high entropy alloys), представляющих 
собой сплавы, в состав которых входит от 5 до 10 
и  более элементов примерно в  эквиатомном 

или эквимолярном соотношении [1–8]. Спла-
вы интересны своими уникальными свойства-
ми, проявляющимися из-за четырех эффектов, 
связанных с  высокой энтропией, искажениями 
кристаллической решетки, замедленной диф-
фузией компонентов сплава, “коктейльным” 
(синергетическим) эффектом [9]. ВЭС по срав-
нению с  простыми системами демонстрируют 
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повышенные механические характеристики, 
такие как твердость, предел прочности при сжа-
тии [10], имеют высокие износо- и  коррозион-
ную стойкость [11,12], стойкость к  окислению 
и  термическую стабильность [13, 14], высокую 
намагниченность насыщения и низкую коэрци-
тивную силу [15], специфические электрофизи-
ческие свойства [16, 17]. 

Среди распространенных групп HEA выделя-
ются материалы a) на основе 3d переходных ме-
таллов (Fe, Co, Cr, Ni, Mn, Al, Ti, Cu, V), например 
сплав Кантора [18], б) на  основе 4f переходных 
металлов (Gd, Dy, Lu, Tm, Tb, Y) [19], в) легко-
плавкие сплавы (Al, Ti, Mg, Li, Be) [20], г) на ос-
нове тугоплавких металлов (Ta, Nb, Zr, Hf, W, V, 
Ti, Cr) [21,22] и  др. Современные исследования 
все чаще посвящены разработке керамических 
(объемных) материалов, в которых роль металла 
играет ВЭС. Известны оксидные [23], карбид-
ные [24], нитридные [25], реже – боридные [26] 
системы на основе ВЭС. Данные по силицидам 
ВЭС к настоящему времени сильно ограничены. 
Ближе к 2020 году появились первые результаты 
по  созданию материалов на  основе силицидов 
HEA (MoNbTaTiW)Si2  [27], (NbMoTaWV)Si2  [28], 
(MoWCrTaNb)Si2 [29], (MoWReCrV)Si2 [30]. 
Причем исследуются как небольшие добавки 
Si (2–17 ат.%) [31, 32] к ВЭС, так и силицидные 
системы со  стехиометрическим соотношением 
Si/HEA = 2 [27–30, 33]. Перспективным направ-
лением является создание жаростойкой керами-
ки типа HEA-Si-B, которая может прийти на за-
мену материалов системы Mo-Si-B, предельные 
свойства которых уже достигнуты [34].

Ранее в  нашей лаборатории c применени-
ем СВС-катодов были получены покрытия 
(MoTaNbZrHf)-Si-B, обладающие твердостью 
до  14 ГПа, упругим восстановлением 39%, хо-
рошими трибологическими свойствами и жаро-
стойкостью до 1500°С [35]. Данное исследование 
направлено на  повышение жаростойкости ука-
занных покрытий. 

Известно, что повышение содержания крем-
ния в  покрытиях увеличивает их стойкость 
к  высокотемпературному окислению, что было 
ранее показано на примере систем TiBSiN [36], 
MoSiBN [37], ZrMoSiB [38]. Повышение жаро-
стойкости в этом случае связано с образованием 
на  поверхности покрытий плотных защитных 
оксидных слоев на  основе Si-O, препятствую-
щих дальнейшей диффузии кислорода вглубь 
материала. 

Еще одним из  способов повышения жаро-
стойкости покрытий является формирование 

многослойных структур, содержащих помимо 
слоев основного материала дополнительные 
слои Si или его соединений (SiC, SiCN, Si3N4). 
Известны многослойные покрытия, такие как 
ZrB2/SiC [39], которые устойчивы к  окисле-
нию в  течение более 300 ч при 900°С и  217 ч 
при 1500°С. В  работе [40] магнетронным на-
пылением были изготовлены многослойные 
покрытия BCx/SiC с  высокой жаростойкостью 
до  1200°C, в  то время как однослойные BCx 
полностью окислялись уже при 700°C. Меха-
низм повышения жаростойкости покрытий при 
добавлении кремнийсодержащих слоев тот же, 
что и при легировании их кремнием. Введение 
дополнительных кремнийсодержащих слоев 
позволяет повысить термическую стабильность 
и жаростойкость покрытий, что было показано 
нами ранее при исследовании многослойных 
покрытий ZrSiB/SiBC [41], MoSiB/SiBC  [42], 
TiAlSiCN/SiBCN [43]. В  настоящей работе 
в  качестве кремнийсодержащего слоя были 
выбраны ранее полученные покрытия в  систе-
ме Si-B-C-(N)  [44], характеризующиеся твер-
достью до  20 ГПа, упругим восстановлением 
до 53%, а также жаростойкостью выше 1200°С.

Целью данной работы является исследо-
вание структуры и  определение жаростойко-
сти покрытий с  повышенным содержанием 
кремния, полученных при магнетронном рас-
пылении мишеней (MoTaNbZrHf)SiB и  SiBC. 
Исследовалось четыре типа покрытий: однос-
лойные (SL, single-layer) основного состава 
(MoTaNbZrHf)-Si-B, двухслойные (DL, dou-
ble-layer), нанесенные при последовательном 
распылении мишеней, многослойные (ML, 
multilayer), нанесенные при циклически повто-
ряющемся распылении мишеней, и  наноком-
позитные (NC, nanocomposite), нанесенные при 
одновременном распылении мишеней. 

МЕТОДИКА ЭКСПЕРИМЕНТА

Мишень для магнетронного распыления 
(Ø120 × 10 мм) была изготовлена сочетанием 
методов механического легирования, само-
распространяющегося высокотемпературного 
синтеза (СВС) и  горячего прессования (ГП). 
Для получения порошковых гранул твердого 
раствора проводили механическое легирова-
ние (МЛ) смеси из  металлических порошков 
Mo (ПМ-99,95), Nb (НбП-3а), Hf (ГФМ-2), 
Ta (ТаПМ) и  Zr (ПЦрК-1) при эквиатомном 
соотношении компонентов в планетарной цен-
тробежной мельнице “Активатор-2SL” (ООО 
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“Завод химического машиностроения”, Рос-
сия). Процесс проводился в  герметичных ба-
рабанах из  нержавеющей стали в  среде Ar при 
скорости вращения 700 об/мин, соотношении 
масс компонентов смеси и размольных тел 1 : 15 
и  времени 30 мин. Далее в  той же мельнице 
по  аналогичным режимам готовились реакци-
онные смеси полученных гранул с  порошками: 
60 ат.% Si (менее 63  мкм) и  5 ат.% B (Б-99А). 
СВС проводился в  Ar (99.9995%). Продукты 
синтеза измельчали в  шаровой вращающейся 
мельнице с  использованием твердосплавных 
футеровки и  размольных тел в  течение 8 ч. ГП 
проводили на установке DSP-515 SA (Dr. Fritsch 
Sondermaschinen GmbH, Германия) в  графито-
вой пресс-форме диаметром 120 мм при темпера-
туре 1300°С, давлении 35 МПа и времени 10 мин. 
Вторая мишень SiBC (70%Si-25%B-5%C) диаме-
тром 120 мм и  толщиной 10 мм была получена 
по технологии горячего прессования на установ-
ке DSP-515 SA (Dr. Fritsch, Германия) [44].

Покрытия осаждались на  установке типа 
УВН-2М, оснащенной дисковым магнетроном 
и источником газовых ионов [45]. Применялись 
подложки в  форме дисков Ø30 мм (никелевый 
сплав ХН65ВМТЮ) и подложки прямоугольной 
формы (поликристаллический оксид алюми-
ния ВК-100-1, монокристаллический кремний 
КДБ (111)). Осаждение на разные подложки ве-
лось в  едином технологическом цикле. Перед 
нанесением покрытий металлические подлож-
ки шлифовались и  полировались на  автомати-
ческой машине Struers Rotopol. Ультразвуковая 
очистка проводилась на  установке УЗДН-2Т 
в среде изопропилового спирта в течение 5 мин. 
Непосредственно перед нанесением покрытий 
поверхность подложек подвергалась ионной 
очистке с  использованием ионного источни-
ка (напряжение составляло 2.5  кВ, ток 60  мА, 
время очистки 40 мин). Осаждение покрытий 
в  режиме постоянного тока было реализовано 
с  использованием двухканального блока пи-
тания с  системой дугогашения марки Pinnacle 
Plus 5 × 5 (Advanced Energy). Мощность, по-
даваемая на  мишень (MoTaNbZrHf)SiB со-
ставляла 1 кВт, на  SiBC — 500  Вт. Давление 
и  расход Ar (99.9995%) составляли 0.1–0.2  Па 
и 37.5 мл/мин соответственно. Дистанция напы-
ления слоев (MoTaNbZrHf)-Si-B и Si-B-C фик-
сировалась на уровне 10 и 8 см соответственно. 
Дистанция и  мощность при распылении ми-
шени SiBC определялись ее относительно низ-
кой электропроводностью и  сниженной скоро-
стью распыления. При нанесении двухслойных 

покрытий (DL) длительность позициониро-
вания подложек последовательно над каждом 
из магнетронов составляла 1 ч, суммарное время 
осаждения 2 ч. В  случае многослойных покры-
тий (ML) суммарное время осаждения также 
составило 2 ч, время циклического позициони-
рования подложек над каждым из  магнетронов 
10 мин, количество циклов: 6. Нанокомпозит-
ные покрытия (NC) наносились в  течение 1 ч 
при позиционировании подложек между магне-
тронами. 

Химический состав покрытий определял-
ся методом оптической эмиссионной спектро-
скопии тлеющего разряда (ОЭСТР) на  прибо-
ре Profiler 2 (Horiba Jobin Yvon, Франция) [46]. 
Структура изучалась методом сканирующей 
электронной микроскопии (СЭМ) на  приборе 
S-3400 (Hitachi, Япония), оснащенном энерго-
дисперсионным спектрометром (ЭДС) Noran 7 
Thermo. Рентгенофазовый анализ (РФА) про-
водился на  приборе Phaser D2 (Bruker, США) 
с  использованием излучения CuKα. Для иссле-
дования кинетики окисления покрытий были 
проведены изотермические отжиги в печи SNOL 
7,2/1200 при температуре 1000°С и  выдержках 
в течение 10, 30, 60 и 180 мин. Образцы в инди-
видуальных алундовых тиглях помещались в за-
ранее нагретую до  установленной температуры 
печь. По истечении времени выдержки образцы 
извлекались и  охлаждались до  комнатной тем-
пературы на  воздухе, проводилась фотосъемка 
образцов. Были рассчитаны значения удельного 
изменения массы Δm/S (Δm  – изменение мас-
сы, S  – площадь образца) покрытий в  зависи-
мости от времени выдержки. Для исследования 
жаростойкости покрытий (MoTaNbZrHf)-Si-B 
при более высоких температурах проводились 
неизотермические (нагрев и охлаждение образ-
цов вместе с  печью) отжиги в  муфельной печи 
ТК 15.1800.ДМ.1Ф производства ООО “Термо-
керамика” (Россия) при температурах 1500С 
и 1600°С, выдержка при каждой температуре со-
ставляла 10 мин. Нагрев образцов осуществлял-
ся со скоростью 5 град./мин. Структура покры-
тий после испытаний изучалась методами РЭМ, 
ЭДС и РФА. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис.  1 показаны РЭМ-микрофото-
графии изломов покрытий. Согласно дан-
ным РЭМ, однослойное (SL) покрытие 
(MoTaNbZrHf)-Si-B имело толщину 12.0  мкм. 
Для двухслойного покрытия (DL), толщины 
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слоев (MoTaNbZrHf)-Si-B и  Si-B-C составля-
ли 9.1 и  3.9  мкм соответственно. Более свет-
лый слой на  микрофотографии соответствует 
(MoTaNbZrHf)-Si-B, более темный  – Si-B-C. 
Суммарная толщина многослойного покрытия 
(ML) составляла 13.9 мкм, причем толщины ин-
дивидуальных слоев (MoTaNbZrHf)-Si-B и  Si-
B-C составляли 1.7 и  0.6  мкм соответственно. 
В случае NC покрытия снижение значений тол-
щины до 6.7 мкм объясняется увеличением дис-
танции напыления при расположении столика 
с  подложками в  положении между магнетрона-
ми. Согласно результатам РЭМ-исследований, 
все образцы характеризовались плотной мало-
дефектной структурой с  отсутствием выражен-
ных границ зерен. Подавление формирования 
столбчатой структуры выгодно отличает полу-
ченные покрытия от известных двух- и трехком-
понентных ионно-плазменных покрытий, в ко-
торых реакционная диффузия атомов кислорода 
по границам зерен, как правило, приводит к ка-
тастрофическому окислению при высокотемпе-
ратурном нагреве на воздухе [47, 48].

Результаты РФА покрытий представлены 
на  рис.  1 д. Помимо узких рефлексов, соот-
ветствующих подложке из  Al2O3, на  рентге-
нограммах присутствуют гало в  положениях 
2Ɵ: ~27°, ~40° и ~62°, типичные для аморфных 
покрытий. Таким образом, вследствие конку-
рирующего роста различных силицидных фаз 
в процессе формирования покрытий, введения 
в  состав одновременно нескольких аморфизи-
рующих элементов (Si и B) [49, 50], а также пре-
рывания роста кристаллитов при послойном 
осаждении [51], все покрытия имели аморфную 

структуру. Незначительные отличия по  интен-
сивности рентгенограмм объясняются разны-
ми толщинами покрытий. РФА-исследования, 
выполненные для покрытий на  металлических 
подложках, также установили аморфное строе-
ние покрытий. 

Типичные элементные профили покрытий 
представлены на рис. 2. Исследования методом 
ОЭСТР показали, что SL покрытие содержит, 
ат.%: 51 Si, 7 B, 7 Zr, 7 Nb, 8 Mo, 10 Ta, 10 Nb. 
В покрытиях были обнаружены незначительные 
примеси кислорода и  железа. Металлические 
примеси можно объяснить натиранием мате-
риала размольных тел в  процессе изготовления 
мишени для распыления [52, 53]. Все элемен-
ты были равномерно распределены по толщине 
покрытий. Близкий состав имел нижний слой 
в двухслойном покрытии DL. Верхний слой DL 
покрытия содержал, ат.%: 78 Si, 13 B, 9 C. Таким 
образом, на поверхности DL покрытия достига-
лась повышенная концентрация кремния. Слои 
в ML покрытиях имели состав близкий к соста-
ву соответствующих слоев в DL покрытиях. NC 
покрытия имели следующий состав. ат.%: 61 Si, 
12 B, 9 C, 3 Zr, 3 Nb, 3 Mo, 4 Ta, 5 Hf. По срав-
нению с  базовым SL покрытием наблюдался 
рост концентрации кремния на  10 ат.% и  бора 
на  5 ат.% при общем снижении концентраций 
металлов.

Результаты изотермических отжигов при 
1000°С показали, что для SL покрытия на-
блюдалось резкое снижение Δm/S до  3.1 мг/
см2 при выдержке в  течение 10 мин (рис.  3а), 
что связано с  отслоением покрытия (рис.  3б) 
вследствие его низкой адгезионной прочности 

Рис. 1. РЭМ-микрофотографии изломов покрытий SL (а), DL (б), ML (в), NC (г). Дифрактограммы покрытий (д). 
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Рис. 2. Элементные ОЭСТР-профили покрытий SL (а), DL (б), ML (в), NC (г). 
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и трещиностойкости, а также возможных струк-
турных превращений, сопровождающихся из-
менением объема фазовых составляющих [45]. 
В случае DL-, ML-, NC-покрытий внешний вид 
образцов после различных временных выдержек 
менялся незначительно, выраженных отслое-
ний, вспучиваний, трещин и  других дефектов 
на поверхности заметно не было. Закономерно-
сти изменения параметра Δm/S от времени вы-
держки для покрытий DL, ML, NC были близ-
кими (рис.  3а). Рост Δm/S до  0.15–0.21 мг/см2 

в течение 10 мин связан с образованием на по-
верхности этих покрытия плотной защитной 
оксидной пленки. При последующих нагревах 
и  выдержках данная пленка препятствует ин-
тенсивному окислению покрытий. При выдерж-
ках в диапазоне от 60 до 180 мин параметр либо 
снижался (Ml, DL), либо оставался стабильным 
(NC).

На рис.  4 приведены РЭМ-микрофотогра-
фии поверхности покрытий после отжигов при 
температуре 1500°С с  выдержкой 10 мин. На 
поверхности покрытий SL, DL, ML, NC об-
разуется слой, состоящий преимущественно 
из  боросиликатного стекла Si:B:O (серые об-
ласти без выраженных структурных особенно-
стей на  РЭМ-изображениях). Площадь, заня-
тая данной фазой заметно увеличивается при 
переходе от  SL к  DL, ML, NC, что свидетель-
ствует о  справедливости предположения, свя-
зывающего защитные свойства поверхностного 

оксида с концентрацией кремния в покрытиях. 
В слоях а-Si:B:O содержатся зерна кристалличе-
ских кислородсодержащих фаз: (Hf,Zr)SiOx (по-
крытия SL, DL, ML), (Ta,Hf,Zr)SiOx и  HfSiOx 
(покрытия NC). Размеры отдельных зерен и их 
агломератов этих фаз снижаются с  5–20  мкм 
до 0.5–4.5 мкм при переходе от SL к покрытиям 
DL, ML, NC. 

РЭМ-изображения поперечных изломов 
и ЭДС-карты распределения элементов покры-
тий SL, DL, ML и  NC после отжигов при тем-
пературе 1500°С представлены на  рис.  5. На 
поверхности SL покрытия сформировалась за-
щитная пленка на основе а-Si:B:O, содержащая 
преимущественно кристаллиты (Hf,Zr,Nb,Ta)
SiOx размером 0.6–1.6 мкм в приповерхностном 
слое и кристаллиты (Hf,Zr)SiOx размером 100–
500 нм внутри пленки. Для покрытия DL наблю-
далось формирование защитной пленки на  ос-
нове а-Si:B:O с частицами (Hf,Zr)SiOx размером 
0.2–1.2  мкм, расположенных на  поверхности 
образца и  на границе “защитная пленка–нео-
кисленное покрытие”. Пленка, образовавшаяся 
в  процессе отжигов на  поверхности покрытия 
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Рис.  4. РЭМ-микрофотографии поверхности по-
крытий SL (а), DL (б), ML (в), NC (г) после отжигов 
при температуре 1500°С с выдержкой 10 мин. 
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ML, состояла из  нескольких слоев: а) верхний 
слой на  основе а-Si:B:O с  локально располо-
женными кристаллитами (Hf,Zr)SiOx размером 
150–700 нм; б) средний слой, содержащий бо-
лее крупные частицы (Hf,Zr)SiOx размером 
от  0.8 до  1.7  мкм; в) нижний слой, состоящий 
из  a-Si:B:O+(Hf,Zr)SiOx. На поверхности по-
крытия NC сформировалась защитная плен-
ка, состоящая из  аморфной матрицы a-Si:B:O 
и  кристаллитов (Ta,Hf,Zr)SiOx размером от  0.2 
до 2.0 мкм. 

Толщины защитных пленок для покрытий 
SL, DL, ML и NC, отожженных при 1500°С, со-
ставили 13.3, 9.2, 12.7 и 10.7 мкм (рис. 6а) соот-
ветственно. Также были определены удельное 
изменение массы покрытий (рис. 6б) и разница 
между толщиной исходного покрытия и  тол-
щиной неокисленного слоя, характеризующие 
степень выгорания покрытий (потерю массы) 
в  процессе отжигов (рис.  6а). Минимальными 
толщиной кислородсодержащего слоя и потерей 
массы характеризовалось покрытие DL. Этот 
факт может быть связан с  большой толщиной 
верхнего слоя SiBC, характеризующегося по-
вышенным содержанием кремния, что в  свою 
очередь ускоряет формирование защитного слоя 
Si:B:O на поверхности. 

Таким образом, отжиг на воздухе при 1500°С 
показал, что наблюдается корреляция между 
площадью поверхности отожженных покрытий, 
занятой фазой Si:B:O, и  их защитными свой-
ствами. Увеличение площади Si:B:O, а  также 

снижение размера кристаллитов кислородсо-
держащих фаз приводят к росту жаростойкости 
покрытий. 

На рис.  7 приведены РЭМ-микрофотогра-
фии поверхности покрытий после отжигов при 
температуре 1600°С с  выдержкой 10 мин. На 
поверхности покрытий SL, DL, ML, NC обра-
зуется слой, состоящий из  боросиликатного 
стекла Si:B:O и  зерен кристаллических кисло-
родсодержащих фаз: (Hf,Zr,Nb,Ta)SiOx (покры-
тия SL и NC), (Hf,Zr)SiOx (покрытия DL и ML). 
Для всех покрытий зерна кислородсодержащих 
фаз имеют преимущественно дендритную фор-
му. Причем минимальный размер частиц 0.5–
5.0 мкм наблюдается для покрытия ML. 

РЭМ-изображения поперечных изломов 
и ЭДС-карты распределения элементов покры-
тий SL, DL, ML и NC после отжигов при темпе-
ратуре 1600°С представлены на рис. 8. Покрытие 
SL полностью окислилось в  процессе отжигов 
с образованием слоя толщиной 90 мкм на осно-
ве а-Si:B:O с частицами (Hf,Zr,Nb,Ta)SiOx. При 
исследовании поперечного излома покрытия DL 
90% исследованной площади образца соответ-
ствовали полному окислению покрытия с фор-
мированием слоя а-Si:B:O+(Hf,Zr)SiOx толщи-
ной 60  мкм. На 10% исследованной площади 
выявлялись участки неокисленного покрытия 
DL толщиной 12 мкм (рис. 8б). Увеличение тол-
щины неокисленного слоя покрытия при повы-
шении температуры отжигов может быть связа-
но с изменением объема фазовых составляющих 
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в  результате структурных превращений  [54]. 
Толщина кислородсодержащего слоя для по-
крытия DL составила 13  мкм. В  случае покры-
тия ML участки сохранившегося неоксиленного 
покрытия занимали 25% от исследованной пло-
щади излома образца (рис. 8в). Состав и струк-
тура защитной пленки были идентичны данным, 
полученным при температуре 1500°С. Толщины 
защитной пленки и неокисленного слоя для по-
крытия ML составили 17 и 13 мкм соответствен-
но. Покрытие NC сохранилось фрагментарно 
(рис.  8г). Сохранившиеся участки покрытия 
были окружены кислородсодержащей пленкой 
на основе Si:B:O. 

Согласно данным РФА, для всех покры-
тий после отжига при температуре 1500°С на-
блюдается образование следующих фаз: си-
лицидов t-Tа5Si3 (ICDD 82-9452) и  h-Zr5Si3 
(ICDD 79-4988), соответствующих неокислен-
ному слою покрытия, а  также силиката гаф-
ния t-HfSiO4 (ICDD 77-1759), оксидов o-Tа2О5 
(ICDD 25-0922) и  m-HfO2 (ICDD 34-0104), от-
носящихся к  защитной пленке (рис.  9а). Также 
нельзя исключать образование оксида m-ZrO2, 
положение линий которого совпадает с  поло-
жением пиков m-HfO2. Для покрытий SL, DL 
и NC пики с максимальной интенсивностью со-
ответствовали фазе t-HfSiO4, для покрытия ML 
максимальной интенсивностью обладали пики 
m-HfO2. Основные пики t-HfSiO4 были обнару-
жены в положениях 2Ɵ = 20.1°, 27.2°, 35.7°, 47.6°. 

Размеры кристаллитов этой фазы, определенные 
по  формуле Дебая–Шеррера для неперекрыва-
ющегося пика при 2Ɵ = 20.1°, составил ~50 нм 
для покрытий SL, NC и  ~30 нм для покрытий 
DL и ML. Стоит отметить, что для покрытия ML 
аморфное гало, наблюдаемое в исходном состо-
янии, сохранялось после отжигов при темпера-
туре 1500°С.

Рентгенограммы покрытий, отожжен-
ных при температуре 1600°С, представлены 
на  рис.  9б. Наблюдалось образование новых 
оксидных фаз h-MoO3 (ICDD 77-1759) (SL, DL, 
ML, NC), m-Nb2O5 (ICDD 68-0148) (SL), t-NbO2 
(ICDD 74-2387) (DL, ML, NC). Стоит отметить 
отсутствие пиков от  фаз t-Tа5Si3 и  h-Zr5Si3 для 
покрытий SL и DL, что связано с их значитель-
ным окислением (рис. 8а, б). Для покрытия ML 
наблюдался рост интенсивности пиков фазы 
t-HfSiO4 по  сравнению с  отжигами при 1500°С. 
Пики от  силицидов t-Tа5Si3 и  h-Zr5Si3, соответ-
ствующие неокисленному слою покрытия, со-
хранились, однако их интенсивность снизилась 
в  ~2.5 раза по  сравнению с  1500°С. Для образ-
ца NC общая интенсивность пиков снизилась 
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Рис.  7. РЭМ-микрофотографии поверхности по-
крытий SL (а), DL (б), ML (в), NC (г) после отжигов 
при температуре 1500°С с выдержкой 10 мин. 
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Рис. 8. РЭМ-изображения поперечных изломов 
и ЭДС-карты для покрытий SL (а), DL (б), ML (в), 
NC (г) после отжигов при температуре 1600°С.
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в 5 раз, при этом выявлялись низкоинтенсивные 
пики от фаз t-Tа5Si3 и h-Zr5Si3. 

Таким образом, отжиг на воздухе при 1600°С 
показал, что лучшей стойкостью к  окислению 
характеризуется покрытие ML. Схожий поло-
жительный эффект от  использования в  архи-
тектуре покрытий слоев кремнийсодержащих 
фаз наблюдался в работах [43, 55], посвященных 
исследованию покрытий TiAlSiCN/SiBCN. Вы-
сокие диффузионно-барьерные характеристики 
слоев SiBCN обеспечивали рост жаростойкости 
за счет подавления диффузии компонентов к по-
верхности из слоев основного состава, TiAlSiCN. 

ВЫВОДЫ

Методом магнетронного распыления 
были получены однослойные (SL) покрытия 
(MoTaNbZrHf)-Si-B, а также одно- (NC), двух- 
(DL) и многослойные (ML) покрытия с повы-
шенной концентрацией кремния, осажденные 
при последовательном или одновременном рас-
пылении мишеней (MoTaNbZrHf)SiB и SiBC . 

Покрытия SL и NC толщиной 12.0 и 6.7 мкм, 
характеризовались однородной структурой 
и  равномерным распределением элементов 
по толщине. Для двухслойного покрытия, толщи-
ны слоев (MoTaNbZrHf)-Si-B и Si-B-C составля-
ли 9.1 и 3.9 мкм соответственно. Многослойное 

покрытие толщиной 13.9 мкм состояло из инди-
видуальных слоев (MoTaNbZrHf)-Si-B и Si-B-C 
толщиной 1.7 и 0.6 мкм соответственно. 

Результаты изотермических отжигов пока-
зали, что покрытия DL, ML и NC, полученные 
с  использованием мишени SiBC характери-
зуются минимальным удельным изменением 
массы Δm/S = 0.15–0.21 мг/см2 и  по стойкости 
к  окислению при температуре 1000°С превос-
ходят однослойные покрытия SL, имеющие 
Δm/S = –3.1 мг/см2. 

Неизотермические отжиги показали, что все 
покрытия сохраняют свои защитные свойства 
при температуре 1500°С. Удельное изменение 
массы покрытий снижалось в  1.2–2.0 раза при 
переходе от  однослойного покрытия SL к  по-
крытиям DL, ML и NC. При температуре 1600°С 
покрытия SL и NC полностью окислились, в то 
время как покрытия DL и ML фрагментарно со-
хранились, что связано с положительным влия-
нием добавки SiBC, характеризующийся повы-
шенным содержанием кремния. 
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Рис. 9. Рентгенограммы покрытий после отжигов при 1500 (а) и 1600°С (б).
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