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Химическую полимеризацию анилина проводили в  водных растворах сульфированного поли-
сульфона (СПС) при различных соотношениях концентраций анилина и сульфогрупп СПС. Ход 
полимеризации был исследован методом in situ спектроскопии в  УФ-видимой-ближней ИК-
областях. Показано, что при увеличении концентрации СПС скорость полимеризации увеличи-
вается. Пленки вододиспергируемых комплексов полианилина (ПАНИ) с СПС были получены 
методом пульверизации. Впервые изучены электронная и  химическая структура, морфология 
и сенсорные (аммиак) свойства пленок комплексов ПАНИ-СПС. 
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ВВЕДЕНИЕ

Полианилин (ПАНИ) один из  широко ис-
пользуемых проводящих полимеров благодаря 
таким его свойствам, как широкий диапазон из-
менения электрических и спектральных свойств 
в  зависимости от  степени окисленности, нали-
чие ионной проводимости. Его отличает высо-
кая термическая и  химическая стабильность, 
а также низкая себестоимость. Слои ПАНИ на-
ходят применение в качестве антикоррозионных 
и  проводящих покрытий, для экранирования 
электромагнитного излучения, при создании 
электрохромных, электролюминесцентных, 
и фотовольтаических устройств, суперконденса-
торов, био- и химических сенсоров и др. [1].

Для улучшения комплекса свойств ПАНИ 
его синтез проводят в  присутствии различных 
допантов, в  частности полимерных кислот. 

Получаемый таким образом интерполимерный 
комплекс является водорастворимым (вододис-
пергируемым), что значительно облегчает нане-
сение слоев ПАНИ для различных применений. 
Полимерные сульфокислоты выполняют одно-
временно функцию допирующей кислоты и ста-
билизатора дисперсии ПАНИ. Установлено, что 
структура поликислоты влияет на процесс син-
теза ПАНИ, строение и свойства его интерполи-
мерных комплексов [2]. 

Для улучшения механических свойств ПАНИ 
получают его композиты на  полимерных мате-
риалах, таких как полиэтилен, полипропилен, 
ацетат целлюлозы, сшитый полистирол, поли-
карбонат и полиамид-6, где полимерная подлож-
ка обеспечивает высокие механические свойства, 
а ПАНИ выступает в качестве активного компо-
нента [3]. Ряд работ посвящены синтезу ПАНИ 
на  мембранах, содержащих сульфокислотные 
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группы, например Нафион или МФ-4СК [3–7], 
в сульфокатионитовых мембранах из полиэтиле-
на с привитой полистиролсульфокислотой [8]. 

Среди полимерных материалов термопла-
стичные полисульфоны (СП) имеют преиму-
щества благодаря своей высокой термической, 
механической и  химической стабильности, 
большой устойчивости и  стабильным эксплу-
атационным характеристикам в  течение дли-
тельного времени [9]. Для повышения гидро-
фильности и  проницаемости мембран при их 
использовании для разделения белков прово-
дили полимеризацию анилина на поверхности 
полисульфоновых мембран [10]. Для улучше-
ния гидрофильности мембраны формировали 
из раствора смеси комплекса ПАНИ с полисуль-
фокислотой с полисульфоном [11]. Были разра-
ботаны биосенсоры для определения глюкозы 
и холестерина из композитов ПАНИ с наноча-
стицами платины на  полой полисульфоновой 
мембране с  градиентной пористой структурой 
[12]. Гибкие оптические pH-сенсоры были по-
лучены полимеризацией анилина на полисуль-
фоновой мембране [13].

Для увеличения гидрофильности мембран 
проводят их сульфирование. С другой стороны, 
мембраны с  высокой степенью сульфирования 
набухают и  растворяются в  воде, что ограни-
чивает их применение. Используя в  качестве 
матрицы пористые пленки из  сульфированно-
го полисульфона (СПС) с  различной степенью 
сульфирования в качестве матрицы, были полу-
чены композитные пленки ПАНИ путем хими-
ческой окислительной полимеризации анили-
на  [14]. Результаты показали, что пленка СПС 
играла роль матрицы при формировании ком-
позитной пленки ПАНИ-СПС с пористой элек-
тропроводящей поверхностью.

В настоящей работе мы  использовали СПС 
с  высокой степенью сульфирования в  виде во-
дного раствора в  качестве допирующей кисло-
ты при синтезе ПАНИ. В результате получалась 
водная дисперсия интерполимерного комплекса 
ПАНИ и сульфированного полисульфона. Было 
изучено влияние соотношения концентраций 
мономера к мономерному звену СПС на харак-
тер синтеза, структуру и сенсорные свойства по-
лучаемых комплексов ПАНИ-СПС.

Обнаружение газообразного аммиака как од-
ного из  наиболее распространенных промыш-
ленных загрязнителей представляет постоянный 
интерес. Большинство сенсоров на аммиак на ос-
нове проводящих полимеров работают по рези-
стивному механизму детектирования [15]. В то же 

время оптические сенсоры могут обеспечивать 
высокую чувствительность  [16–18], короткое 
время отклика и простую регенерацию [16], при 
этом на их отклик меньше влияют такие внешние 
факторы, как электромагнитные помехи, влаж-
ность и температура [15–20]. В основном ПАНИ 
для таких сенсоров получают химической поли-
меризацией анилина в  присутствии неоргани-
ческих кислот и наносят его на различные виды 
подложек [17, 18, 21], такие как стекло, полиэти-
лен и ткани, методом спрей-распыления [18, 21] 
или погружения подложки непосредственно 
в  синтез [17]. Для применения в  оптических 
сенсорах может быть пригодна тонкая пленка 
ПАНИ, нанесенная на стекло (или ITO-стекло), 
поскольку спектральные изменения в  УФ‑ви-
димой-ближней ИК-областях спектра, которые 
отражают изменения электронной структуры 
ПАНИ при воздействии газообразного аммиа-
ка, легко регистрируются с  помощью коммер-
ческих спектрометров [15] или обнаруживаются 
с помощью одноволновых оптоэлектронных пар. 
Другим преимуществом таких сенсоров является 
возможность передавать аналитический сигнал 
без искажений на  большие расстояния [15, 20]. 
Ранее была показана перспективность создания 
оптических сенсоров на основе электрохимиче-
ски полученных слоев комплексов ПАНИ с по-
лимерными сульфокислотами [22].

В настоящей работе разработанные водо-
диспергируемые композиции ПАНИ‑СПС на-
носили методом пульверизации на  стеклянные 
подложки и тестировали полученные слои в ка-
честве оптических сенсоров на аммиак.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованные вещества и их подготовка

Используемый для получения ПАНИ анилин 
(Sigma Aldrich, США) перегоняли под вакуумом 
в  атмосфере азота, отбиралась фракция, кипя-
щая при температуре 82–84°C (20 мм рт. ст.), 
nD

20 1 253= . . Использовался свежеперегнанный 
продукт.

Сульфирование полисульфона проводили 
хлорсульфоновой кислотой по аналогии с мето-
дикой, приведенной в [23, 24]. Использовали по-
лисульфон "Udel 3500 LCD MB7", характеристиче-
ская вязкость – 0.46 дл/г (N,N-диметилацетамид, 
25°С). Сульфирование проводили в  атмосфере 
азота при температуре 0°С в  колбе, снабженной 
механической мешалкой и капельной воронкой. 
Для этого к раствору 42.1 г (95.24 ммоль-звено) ПС 
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в 400 мл осушенного 1,2-дихлорэтана при интен-
сивном перемешивании в течение 1 ч прикапали 
13.26 мл (201.55 ммоль) хлорсульфоновой кисло-
ты в  20 мл 1,2-дихлорэтане. Практически сразу 
из  раствора выделяется осадок СПС. По окон-
чании прибавления хлорсульфоновой кислоты 
реакционную массу перемешивали еще в  тече-
ние 1 ч, после чего выделившийся СПС отделяли 
от  1,2-дихлорэтана, промывали свежей порцией 
1,2-дихлорэтана, переносили в  изопропиловый 
спирт и  промывали свежей порцией изопропи-
лового спирта. Затем СПС сушили в вакууме при 
температуре 55°С до постоянной массы. Анализ 
1Н ЯМР-спектров показал сульфирование всех 
звеньев СП (степень сульфирования – 1.03). На 
рис. 1 показана структурная формула полученно-
го СПС.

Полимеризацию анилина проводили в  вод-
ном растворе СПС. Предварительно СПС в тече-
ние 7 дней набухал в воде при комнатной темпе-
ратуре. Для получения 0.05 М водного раствора 
СПС нагревали до  80–100°C на  глицериновой 
бане до полного растворения. 

В качестве окислителя использовали пер-
сульфат аммония без дополнительной очистки.

Методика полимеризации анилина

Полимеризацию анилина проводили мето-
дом окислительной химической полимериза-
ции при различных соотношениях концентра-
ций анилина к сульфокислотным группам СПС: 
1 : 1, 1 : 2, 1 : 3, 1 : 4 и 1 : 6 моль/г-экв. Предва-
рительно были приготовлены водные раство-
ры СПС нужной концентрации. Затем анилин 
растворяли в растворах СПС в течение 2 часов. 
Концентрация анилина во  всех растворах была 
одинаковой – 0.005 М. 

Перед началом полимеризации окислитель 
в  количестве, необходимом чтобы обеспечить 
мольное соотношение 1 : 1 к  анилину, раство-
ряли в 1 мл дистиллированной воды. Затем рас-
твор окислителя добавляли к раствору анилина 

в  СПС и  интенсивно перемешивали в  течение 
полутора минут. В  процессе синтеза регистри-
ровали электронные спектры поглощения рас-
творов. Для этого в кварцевую кювету толщиной 
1 мм переносили 0.4 мл раствора. Среднее время 
полимеризации составляло 30–60 мин.

После полимеризации растворы комплексов 
ПАНИ с  СПС очищали диализом против дис-
тиллированной воды (диализная целлюлозная 
мембрана ZelluTrans, MWCO 8000-10000, (Carl 
Roth, Германия) в  течение 3 сут. для удаления 
олигомеров и остатков окислителя.

Пленки полученных комплексов ПАНИ 
с СПС наносили из их растворов на стеклянные 
подложки 9 × 40 мм методом пульверизации при 
помощи аэрографа на разогретую (~70°С) гори-
зонтально-выравненную стеклянную подложку 
с расстояния 20 см.

Методы исследования 

Измерения рН растворов СПС до  и  после 
добавления анилина проводили с  помощью 
рН‑метра OP-208/1 (Radelkis, Венгрия), точ-
ность измерения составляла ±0.05.

Электронные спектры поглощения реак-
ционного раствора во  время полимеризации 
анилина регистрировали в  области 350–950 нм 
при помощи однолучевого оптоволоконного 
спектрофотометра Avantes 2048 (Avantes B.V., 
Нидерланды). Регистрацию спектров электрон-
ного поглощения в  УФ-видимой и  ближней 
ИК-областях пленок, полученных комплек-
сов ПАНИ проводили с  помощью двухлуче-
вого спектрофотометра Shimadzu UV-3101PC 
(Shimadzu GmbH, Германия).

Спектры комбинационного рассеяния (КР) 
регистрировали с  помощью оптоволокон-
ного спектрофотометра Sunshine TG-Raman 
(CNI, Китай), оборудованного соответствую-
щей дифракционной решеткой, под управле-
нием фирменной программы Spectral Analy-
sis 5.0 Firmware, полупроводникового лазера 
SSP‑FC‑LD-785-350 (CNI, Китай), с  длиной 
волны 785 нм мощностью 10 мВт и оптоволокон-
ного зонда RIP‑RPB-785 (InPhotonics, США), 
который обеспечивает сбор рассеиваемого в ис-
следуемом образце излучения в направлении об-
ратном лучу лазера, возбуждающего КР (“back 
scattering”).

Исследование морфологии поверхно-
сти пленок и  измерение их толщины прово-
дили на  атомно-силовом микроскопе (АСМ) 
Enviroscope с контроллером Nanoscope V (Bruker, 

O SO2 n
CH3

SO3H

CH3

O

Рис. 1. Структурная формула сульфированного по-
лисульфона.
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США) в полуконтактном режиме. Толщина ис-
следованных пленок составляла 400–500 нм.

Исследование сенсорных свойств было про-
ведено в  соответствии с  методикой, описанной 
в [25]. В кварцевую кювету с длиной оптическо-
го пути 5 см и шириной 10 см помещали раство-
ры аммиака различной концентрации, приго-
товленные путем разбавления 30%-го раствора 
(“Химмед” (Россия), квалификация “ч.д.а.”). 
Концентрации аммиака в воздухе рассчитывали 
с использованием калибровочной кривой на ос-
нове значений парциального давления аммиака 
над его водными растворами, представленных 
в [26].

Пленку ПАНИ-СПС, нанесенную на  стек
лянную подложку, через специальное отверстие 
в  крышке помещали в  закрытую спектрофо-
тометрическую кювету с  парами аммиака. На 
скоростном сканирующем однолучевом спек-
трофотометре Avantes 2048 проводили регистра-
цию спектров поглощения пленок комплексов 
ПАНИ при их взаимодействии с  аммиаком. 
Спектры пленок регистрировали каждые 2 с.

Амплитуду отклика сенсора (ΔA) рассчиты-
вали по формуле:

	 � �
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где A0 и At– оптическая плотность на длине вол-
ны 810 нм в спектре пленки до и после воздей-
ствия аммиака соответственно. 

Время отклика (tот) определяли как время, 
необходимое для достижения 90% относитель-
ного изменения поглощения (ΔA), измеренного 
на длине волны 810 нм. 

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полимеризация анилина в присутствии 
сульфированного полисульфона

В табл. 1 представлены значения pH водных 
растворов СПС до  и  после добавления анили-
на. Видно, что начальные значения pH убы-
вают по  мере увеличения концентрации СПС 
в  водном растворе. При добавлении в  раствор 
СПС анилина pH возрастает, так как анилин 
представляет собой слабое основание. Высокое 
значение pH при соотношении концентраций 
анилина и сульфокислотных групп в СПС, рав-
ном 1 : 1 моль/г-экв. говорит о том, что не весь 
анилин протонируется. В  остальных случаях 
значения pH после добавления анилина меньше 
3 и меняются незначительно.

Для исследования полимеризации анили-
на в  присутствии СПС рассматривали соотно-
шения концентраций анилин и  сульфокислот-
ных групп в СПС, равные 1 : 1, 1 : 2, 1 : 3, 1 : 4, 
1 : 6  моль/г-экв. Для этого в  процессе синтеза 
ПАНИ регистрировали изменения электрон-
ных спектров поглощения растворов (рис. 2). На 
рис. 3а представлены кривые изменения оптиче-
ского поглощения на характерных длинах волн.

При [Анилин]/[-SO3H] в  диапазоне от  1 : 2 
до  1 : 6 моль/г-экв. характер синтеза схож меж-
ду собой. В начале виден рост поглощения в об-
ластях 370 и  690 нм, связанный с  увеличением 
концентрации аминной и  хинониминной форм 
ПАНИ [27]. Следует отметить, что при сравне-
нии с  синтезом в  присутствии полисульфокис-
лот другого строения [2] видно, что максимум 
поглощения хинониминных фрагментов смещен 
в длинноволновую область, так же, как и в случае 
полимеризации анилина в  присутствии жестко-
цепных поликислот. В процессе синтеза за счет 
образования серной кислоты pH снижается 
и  происходит рост высокомолекулярных цепей 
с регулярной структурой. Затем происходит сдвиг 
максимума к 800 нм и одновременное появлении 
плеча на длине волны 430 нм, соответствующих 
формированию полуокисленной формы ПАНИ 
(рис.  2). На данном этапе, благодаря межмоле-
кулярным донорно-акцепторным взаимодей-
ствиям хинониминных и  аминных структур 
ПАНИ, образуются локализованные поляроны 
и катион-радикалы и окончательно формируется 
структура ПАНИ с переходом окрашивания рас-
творов от синего к темно-зеленому.

При [Анилин]/[-SO3H], равном 1 : 1 моль/
г-экв., изначально наблюдается рост полосы 
поглощения на  длине волны 420 нм, что про-
исходит из‑за образования N‑фенил-1,4-бензо-
хинондиимина [28], и раствор приобретает жел-
тый оттенок. Кроме того, при pH выше 3 может 
происходить образование смешанных структур 
(орто-, мета- и  параолигомеров) [29]. Синтез 
идет намного медленнее, чем при более высоком 
содержании СПС. Затем наблюдается рост по-
глощения на длинах волн 370 и 690 нм, и окраска 
реакционной смеси меняется с желтой на зеле-
ную и  затем на  синюю. Активный рост погло-
щения раствора наблюдается спустя 40 минут 
после начала синтеза. Далее наблюдается сдвиг 
максимума полосы поглощения 690 нм в длин-
новолновую область вблизи 800 нм и  одновре-
менное появлении плеча на 430 нм, что соответ-
ствует образованию локализованных поляронов 
и катион-радикалов. 
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Кривые изменения поглощения, приведенные 
на рис. 3б, дают возможность оценить скорость 
полимеризации. В табл. 1 представлены данные 
о  продолжительности индукционного периода 
в  зависимости от  концентрации СПС. За про-
должительность индукционного периода прини-
мали отрезок, отсекаемый на оси абсцисс, каса-
тельной к прямолинейному участку зависимости 
изменения оптического поглощения на  длине 
волны 690 нм от  времени. Самый длительный 
индукционный период наблюдается для соот-
ношения анилина к СПС 1 : 1 моль/моль-звено. 
При увеличении концентрации СПС в растворах 
индукционный период уменьшается. А  при со-
отношениях 1 : 4 и  1 : 6  моль/моль-звено имеет 
одинаковые значения.

Характеризация пленок комплексов ПАНИ-СПС, 
полученных методом пульверизации

Электронная спектроскопия в УФ-видимой 
и ближней ИК-областях

На рис.  4 представлены электронные 
спектры поглощения пленок, нанесенных 
методом пульверизации водных дисперсий 
ПАНИ-СПС, полученных при различных со-
отношениях анилина к  СПС в  полимериза-
ционном растворе. Форма всех спектров схо-
жа – наблюдается плечо длины волны 450 нм, 
соответствующее поглощению катион-ради-
калов. Интенсивность полосы поглощения 
локализованных поляронов в  области 810 нм 
по  мере увеличения содержания СПС замет-
но увеличивается. Плечо, наблюдаемое при 

[Анилин]/[-SO3H], равном 1 : 1 моль/г-экв. 
на  длине волны 550 нм, по‑видимому, можно 
отнести к поглощению хиноидных фрагментов 
цепи. Можно предположить, что в  условиях 
нехватки допирующей кислоты при [Анилин]/
[-SO3H], равном 1 : 1 моль/г-экв., ПАНИ полу-
чается в более окисленной форме.

Видно, что положения максимумов по-
глощения локализованных поляронов прак-
тически одинаковы для пленок, полученных 
при [Анилин]/[-SO3H], равных 1 : 1, 1 : 2, 1 : 3 
и 1 : 4 моль/г-экв. Гипсохромное смещение мак-
симума (784 нм) наблюдается для соотношения 

Таблица 1. pH водных растворов СПС до и после добавления анилина и индукционные периоды при синтезе 
ПАНИ, рассчитанные по кинетике изменений оптической плотности полосы на 690 нм

[Анилин]/[СПС], 
моль/г-экв.

рН растворов СПС
Индукционный период, с

до добавления анилина после добавления анилина

1:1 2.19 4.15 3050

1:2 1.90 2.32 1150

1:3 1.72 2.36 1100

1:4 1.70 1.87 950

1:6 1.43 1.56 950
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Рис. 2. Изменение электронных спектров поглощения 
в  процессе полимеризации анилина в  присутствии 
СПС при [Анилин]/[-SO3H] = 1/3  моль/г-экв. 
Стрелки показывают изменение поглощения 
раствора в  областях характеристических длин 
волн.
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1 : 6 моль/г-экв. Аналогичный сдвиг спектра по-
глощения ПАНИ при увеличении концентрации 
полимерной кислоты в  реакционной смеси на-
блюдали в работах [30, 31]. Это явление авторы 
связывали с уменьшением размера образующих-
ся частиц, подтвержденное микроскопическими 
методами, в  результате уменьшения агрегации 
комплексов ПАНИ–поликислота. Кроме того, 
можно заметить на  спектрах (рис.  4), что при 
уменьшении содержания СПС растет рассеяние. 
Это, по-видимому, связано с тем, что содержания 
СПС недостаточно для получения более мелкой 
гидрофильной дисперсии ПАНИ-СПС. Только 
при [Анилин]/[-SO3H], равном 1 : 6 моль/г‑экв., 
наблюдается спектр пленки, характерный для 
допированного и  хорошо стабилизированного 
ПАНИ.

Спектроскопия комбинационного рассеяния

Химическая структура пленок ПАНИ-СПС 
была исследована методом спектроскопии ком-
бинационного рассеяния (КР). Для облегчения 
сравнения мы  использовали нормировку спек-
тров комбинационного рассеяния света на  ам-
плитуду полосы копланарных деформационных 
колебаний связей C–H в ароматических кольцах 
на частоте 1156 см–1 [32]. Такая нормировка пред-
ставляется адекватной, поскольку число этих 
связей практически не зависит от степени окис-
ленности ПАНИ. На рис. 5 видны характерные 
полосы КР ПАНИ, соответствующие валентным 
колебаниям связей C–N в аминных фрагментах 
соседствующих с  хиноидными  – 1225 см–1 [32]. 
Для комплексов ПАНИ-СПС с  соотношения-
ми 1 : 3 и 1 : 6 моль/г-экв. характерен максимум 
на 1333 см–1, который приписывается валентным 
колебаниям в  делокализованных катион‑ради-
кальных фрагментах C ~ N+·, а  для соотноше-
ния 1 : 1 моль/г-экв. он смещен на 1347 см–1, что 
свидетельствует о  наличии коротких локализо-
ванных катион‑радикальных фрагментов [33]. 
Колебания на частотах 1580 и 1489 см–1 соответ-
ствуют валентным колебаниям двойных связей 
C=C в хиноидном кольце и валентным колеба-
ниям двойных связей C=N в  иминной форме 
ПАНИ, соответственно [34]. Плечо на 1610 см–1, 
которое практически не  наблюдается для ком-
плекса ПАНИ‑СПС (1 : 1), приписывается С-С 
связям в  бензольных кольцах восстановленной 
формы ПАНИ. Это свидетельствует о  том, что 
комплекс ПАНИ‑СПС (1 : 1) находится в более 
окисленном состоянии, что коррелирует с  дан-
ными оптической спектроскопии.
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Рис.  4. Электронные спектры поглощения пле-
нок комплексов ПАНИ-СПС, полученных при 
[Анилин]/[-SO3H], равных 1 : 1 (1), 1 : 2 (2), 1 : 3 (3), 
1 : 4 (4), 1 : 6 (5) моль/г‑экв.
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Рис. 3. Кривые изменения оптического поглощения, полученные при полимеризации анилина в присутствии СПС: 
при [Анилин]/[-SO3H] = 1 : 2 моль/г‑экв., на длинах волн 370 (1), 690 (2) и 800 нм (3) (а) и при [Анилин]/[-SO3H], 
равных 1 : 1 (1), 1 : 2 (2), 1 : 3 (3), 1 : 4 (4), 1 : 6 (5) на длине волны 690 нм (б).
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Морфология

Методом атомно-силовой микроскопии была 
изучена морфология поверхности пленок ком-
плексов ПАНИ-СПС. Исследования проводили 
в  двух масштабах: кадры 2 × 2  мкм для анализа 
тонкой структуры ПАНИ и  кадры 50 × 50  мкм 
для анализа пространственного распределения 
ПАНИ при пульверизации его водного раствора. 
Пленки также были рассмотрены в  оптический 
микроскоп на просвет при ширине кадра 400 мкм. 

На рис. 6а видно, что ПАНИ состоит из ни-
тей, которые формируют характерную глобу-
лярную структуру. Все исследованные ком-
плексы имеют похожую тонкую структуру. При 
рассмотрении кадров 50 × 50 мкм видны следы 
капель, образующиеся при напылении (рис. 6б–
г). Следы имеют кольцеобразную форму: ла-
теральный размер 10–20  мкм, высота валиков 
10–60 нм относительно окружающего фона. По-
добная характерная форма следов объясняется 

образованием ударных кратеров при распыле-
нии и “эффектом кофейного пятна”, при кото-
ром происходит концентрирование коллоидных 
частиц и  более быстрое высыхание по  краям 
капли. Для рассмотренных образцов особенно 
хорошо эти следы можно наблюдать в  оптиче-
ский микроскоп на просвет при наведении фо-
куса вглубь пленок. По-видимому, эти эффек-
ты заметно проявляют себя в начале нанесения 
пленок, далее происходит преимущественно по-
степенное “зарастание” уже имеющихся колец.

Соотношение компонентов существенно 
влияет на морфологию пленок в масштабе сотен 
микрон. Для рассмотренного ряда комплексов 
ПАНИ-СПС от 1 : 6 к 1 : 1 возрастает склонность 
к  растрескиванию пленок при высыхании, при 
этом образуется характерный полигональный 
узор типа такыр (рис.  6е). Причем при прибли-
жении к соотношению 1 : 1 полигоны становятся 
разделенными хребтами высотой ~1 мкм. Это ста-
новится возможным, когда трещины закрываются 
отслаивающимся и загибающимся вверх верхним 
слоем пленки по периметру полигонов из-за не-
равномерного высыхания по  толщине. Как по-
казывает анализ АСМ-изображений для кадров 
50 × 50  мкм, плавные перепады высот внутри 
полигонов составляют сотни нм. При соотноше-
нии 1 : 6 поверхность пленки наиболее однород-
на: растрескивания не  происходит, в  масштабе 
50 мкм пленка также более гладкая (рис. 6в, д). 

Исследование сенсорных свойств пленок 
комплексов полианилина с сульфированным 

полисульфоном

Возможность использования того или иного 
материала в качестве сенсора определяется таки-
ми параметрами, как чувствительность (предел 
обнаружения) и время срабатывания, концентра-
ционная зависимость амплитуды отклика и  об-
ратимость изменения измеряемого параметра. 
В данной работе основным критерием сравнения 
была выбрана оптическая плотность на  длине 
волне с  максимальной амплитудой изменения. 
Кроме того, выбранная длина волны должна быть 
близка к  стандартной длине волны светодиода, 
который на практике может использоваться в оп-
тических сенсорах вместо спектрофотометра.

На рис. 7 показано изменение электронного 
спектра поглощения пленки ПАНИ при воздей-
ствии паров аммиака с концентрацией в воздухе 
263 ppm. Видно, что на длине волны 810 нм по-
глощение уменьшается и  одновременно проис-
ходит увеличение поглощения в области 600 нм. 
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Рис.  5. Нормированные (интенсивность линии 
1156 см–1 – копланарные деформационные колеба-
ния связей C–H в  ароматических кольцах ПАНИ) 
спектры КР при возбуждении лазером 785 нм пле-
нок ПАНИ-СПС, нанесенных на  стеклянные под-
ложки методом пульверизации.
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Происходит депротонирование ПАНИ, то  есть 
переход в  основание из  солевой формы, в  ре-
зультате переноса протона ПАНИ на  аммиак. 
Поскольку на длине волны 810 нм амплитуда из-
менения поглощения более выражена, для даль-
нейших исследований сенсорных свойств была 
выбрана именно эта длина волны.

На рис.  8а представлено относительное из-
менение во  времени оптического поглощения 

на  длине волны 810 нм для пленок комплексов 
ПАНИ-СПС с  различным содержанием СПС 
при воздействии аммиака. На основе этих кри-
вых были рассчитаны времена отклика, пред-
ставленные в табл. 2, и концентрационные зави-
симости амплитуды отклика (рис. 8б).

Наименьшее время отклика демонстриру-
ют пленки ПАНИ-СПС (1 : 1). При этом для 
ПАНИ‑СПС, синтезированных при [Анилин]/
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Рис. 6. Изображения поверхности пленок ПАНИ, нанесенных методом пульверизации на стекло: АСМ (а–г), оп-
тическая микроскопия (д–е). Соотношение компонентов 1 : 3 (а, б), 1 : 6 (в, д) и 1 : 1 (г, е).
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[-SO3H], равных 1 : 1, 1 : 2 и 1 : 3 моль/г‑экв., наб-
людается некоторая невоспроизводимость ре-
зультатов, объясняющаяся их неравномерностью, 
наличием на  их поверхности на  микроуровне 
трещин (рис. 6г, е). В случае пленок ПАНИ-СПС, 
синтезированных при [Анилин]/[‑SO3H], равных 
1 : 4 и 1 : 6 моль/г-экв., видно, что время отклика 
тем меньше, чем больше концентрация аммиака. 

На рис. 8а видно, что на кривых отклика пле-
нок можно выделить области быстрого (основная 
часть амплитуды отклика) и  медленного измене-
ния DА. Линейный характер основной части изме-
нения DА свидетельствует о том, что при контакте 
с  аммиаком работает в  основном поверхность 
пленок комплексов ПАНИ‑СПС. Наибольшую 
чувствительность при концентрации аммиака 263 
ppm демонстрирует образец, полученный при 
[Анилин]/[-SO3H], равном 1 : 6  моль/г-экв. Од-
нако время отклика в этом случае является самым 

Таблица 2. Значения времени отклика пленок комплексов ПАНИ-СПС при воздействии аммиака 
с различными концентрациями в воздухе

[Анилин]/[-SO3H], 
моль/г-экв.

tОТ, с

25 ppm 50 ppm 131 ppm 263 ppm 529 ppm

1 : 1 250 124 95 92 82

1 : 2 287 152 128 118 106

1 : 3 363 146 105 81 69

1 : 4 269 182 105 94 66

1 : 6 794 590 294 214 208
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Рис. 8. Относительное изменение во времени оптического поглощения на длине волны 810 нм при воздействии 
паров аммиака с концентрацией 263 ppm (а) и зависимости максимальной амплитуды отклика (DА) от концентра-
ции аммиака (б) для пленок комплексов ПАНИ-СПС, синтезированных при [Анилин]/[-SO3H], равных 1 : 1 (1),  
1 : 2 (2), 1 : 3 (3), 1 : 4 (4), 1 : 6 (5) моль/г-экв.
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Рис.  7. Изменение электронных спектров по-
глощения пленки, полученной при [Анилин]/
[-SO3H] = 1 : 6 моль/г-экв. на  воздухе с  концен-
трацией аммиака 263 ppm. Стрелки указывают 
на  ход изменения в  областях характеристических 
длин волн.
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большим. При меньших концентрациях СПС на-
блюдаются меньшие значения чувствительности. 

На рис. 8б представлены зависимости макси-
мальной амплитуды отклика (DА) на длине волны 
810 нм от концентрации аммиака в воздухе. Нели-
нейные зависимости наблюдались для всех ком-
плексов ПАНИ-СПС при низких концентрациях 
аммиака (<131 ppm). В  диапазоне концентраций 
больше 131 ppm DА изменяется в меньшей степени. 
По‑видимому, в этих случаях происходит насыще-
ние пленок аммиаком. Из рисунка также видно, 
что все исследованные слои надежно детектиру-
ют аммиак в диапазоне концентраций 25–52 ppm 
(ПДК рабочей зоны и предел органолептического 
обнаружения аммиака соответственно). Благо-
даря большой амплитуде отклика слои на основе 
ПАНИ-СПС 1 : 6 могут быть успешно использо-
ваны в качестве сигнал-детектора (alarm-detector) 
с временем отклика менее 100 с (при достижении 
половины максимальной амплитуды).

ЗАКЛЮЧЕНИЕ

Впервые синтезирован вододиспергируемый 
комплекс полианилина с  сульфированным по-
лисульфоном. Показано, что скорость полиме-
ризации растет с увеличением содержания СПС. 
При [Анилин]/[-SO3H], равном 1 : 1 моль/г-экв., 
синтез идет с длительным индукционным перио
дом, во время которого наблюдается формиро-
вание N-фенил-1,4-бензохинондиимина.

Методами УФ-видимой-ближней ИК-спек-
троскопии и  спектроскопии комбинационного 
рассеяния показано, что при недостатке СПС 
комплекс ПАНИ‑СПС (1 : 1) находится в более 
окисленном состоянии и в его структуре наблю-
даются короткие локализованные катион‑ради-
кальные фрагменты. А  при избытке СПС при 
[Анилин]/[‑SO3H], равном 1 : 6 моль/г-экв., 
образуется допированный полуокисленный по-
лианилин, имеющий в своей структуре делока-
лизованные катион‑радикальные фрагменты. 
Методом АСМ показано, что при соотношении 
1 : 6 поверхность пленки наиболее однородна. 

Пленки комплексов ПАНИ-СПС, нанесенные 
на стеклянные подложки методом пульверизации, 
были протестированы в качестве чувствительных 
слоев в оптических сенсорах на содержание паров 
аммиака. Показано, что они могут обнаруживать 
аммиак в  диапазоне концентраций 25–52 ppm 
(ПДК рабочей зоны и предел органолептического 
обнаружения аммиака соответственно). Наиболь-
шую чувствительность к аммиаку в воздухе пока-
зали пленки комплекса ПАНИ-СПС (1 : 6).
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