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ВВЕДЕНИЕ

Салициловая кислота (СК) и ее производные 
обладают биоспецифическими свойствами (ан-
тибактериальные, противовоспалительные, 
антиоксидантные и  др.)  [1–3]. Однако исполь-
зование салициловой кислоты ограничено ее 
растворимостью в  воде и  возможными побоч-
ными эффектами при высоких концентрациях: 
повреждающее действие слизистой оболочки 
желудочно-кишечного тракта, нарушение функ-
ции почек, гастро- и  нефротоксичность  [4, 5]. 
На сегодняшний день в медицине и ветеринарии 
применяют наружно 1–2% спиртовые растворы 
салициловой кислоты и  мази на  ее основе (со-
держание СК 2–10%) [6, 7]. 

Разработка комплексных препаратов на  ос-
нове матриц (носителей) различной природы, 
в том числе углеродных сорбентов, с нанесенной 

салициловой кислотой позволяет увеличить эф-
фективность действия, пролонгировать биоло-
гическую активность СК и снизить токсичность 
лекарственных препаратов. Известны апплика-
ционные гемостатические импланты, модифи-
цированные салициловой кислотой, препараты 
для лечения остеопороза на основе полисалици-
ловой кислоты, модифицированные СК пленки 
хитозана с  антиоксидантными и  антибактери-
альными свойствами и др. [8–10].

Изучение закономерностей и  механизмов 
адсорбции салициловой кислоты на  углерод-
ных сорбентах представляет большой интерес, 
особенно в  присутствии других веществ (ами-
нокислот, производных СК, фенола и  др.). Из-
вестны результаты исследований  [11], соглас-
но которым адсорбционная емкость сорбентов 
(модифицированная сверхсшитая поли(сти-
рол-со-дивинилбензольная) смола) в отношении 
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салициловой кислоты в  присутствии фенола 
возрастает. Наблюдаемый эффект достигается 
за счет того, что фенол более гидрофильный, чем 
салициловая кислота, поэтому он в большей сте-
пени вступает во  взаимодействие с  молекулами 
воды, тем самым повышая адсорбционные вза-
имодействия салициловой кислоты с  поверхно-
стью смол. 

Показано, что присутствие аминокислот 
положительно сказывается на  адсорбции сали-
циловой кислоты на  минералах. Аминогруппы 
в составе кислот проявляют повышенное адсор-
бционное сродство к  ароматическим кислотам 
в  результате кислотно-основного взаимодей-
ствия [12, 13].

Известно, что присутствие сульфосалицило-
вой кислоты в растворе приводит к увеличению 
количества салициловой кислоты, адсорбиро-
ванной на полимерном адсорбенте [14]. За счет 
присутствия в составе кислоты сульфогруппы ее 
растворимость лучше, чем у салициловой кисло-
ты. Таким образом, молекулы сульфосалицило-
вой кислоты экранируют взаимодействие между 
молекулами воды и  салициловой кислоты, по-
вышая адсорбцию последней на смоле. 

Широкое внимание уделяется и  исследова-
ниям совместной адсорбции веществ различной 
природы на углеродных материалах, преимуще-
ственно активных углях. Установлено, что адсор-
бция Cr (IV) из водных растворов порошковым 
активированным углем увеличивается при до-
бавлении гуминовых кислот различной концен-
трации [15]. Адсорбция аминокислот на поверх-
ности углеродных нанотрубок протекает через 
образование мономеров и кластеров на поверх-
ности сорбента  [16]. Результаты исследований 
на коммерческом активированном угле показа-
ли, что присутствие второго компонента способ-
ствует адсорбции первого (кофеин, диклофенак) 
по сравнению с адсорбцией из индивидуальных 
растворов [17]. 

В данной работе в  качестве добавок вы-
браны аминокислоты различной природы: 
фенилаланин (ароматическая альфа-амино-
кислота) и  аргинин (алифатическая основная 
альфа-аминокислота)  [18, 19]. Фенилаланин 
и аргинин широко применяются для модифици-
рования различных видов материалов [20–26]. 

Известны исследования модифицирования 
диоксида титана (IV) салициловой кислотой 
и  аргинином  [27]. Данные об  адсорбции сали-
циловой кислоты на  углеродных материалах 
в присутствии аминокислот в литературе отсут-
ствуют.

Цель данной работы  – совместная ад-
сорбция салициловой кислоты с  аминокис-
лотой (фенилаланин, аргинин) из  водных 
растворов образцами углеродного сорбента. 
Рассматриваемые задачи: установление влия-
ния добавки аминокислоты на  адсорбцион-
ные характеристики углеродного сорбента 
в отношении салициловой кислоты; изучение 
физико-химических и адсорбционных свойств 
углеродных образцов до и после контакта с са-
лициловой кислотой (с добавками аминокис-
лот и без них).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследования  – гранулированный 
углеродный сорбент (УС, ЦНХТ ИК СО РАН, 
Омск, Россия). В качестве адсорбтивов (моди-
фикаторов) применяли салициловую кислоту 
(СК, 99%, Sigma-Aldrich, Германия), фенила-
ланин (Фен, о.с.ч., “Омскреактив”, Россия), 
аргинин (Арг, 99%, Panreac, Испания), в каче-
стве веществ, моделирующих токсичные ор-
ганические соединения,  – красители метиле-
новый голубой (МГ, ч.д.а., “Омскреактив”, 
Россия) и  метаниловый желтый (МЖ, 98%, 
Merk Schuchardt OHG, Германия).

Удельную поверхность образцов исследо-
вали методом низкотемпературной адсорбции 
азота (анализатор Gemini 2380, Micromeritics, 
США). Титриметрическим методом H.P. Boehm 
определяли количественное содержание функ-
циональных групп на поверхности исследуемых 
образцов. Адсорбцию исследовали спектро-
фотометрическим методом (спектрофотометр 
CECIL-1021, Cecil Instruments Limited, Англия). 
Для проведения адсорбции при встряхивании 
использовали шейкер Edmund Buehler SM 30 B 
(Buehler, Германия). рН растворов определяли 
на рН-метре Sartorius PP-20 (Sartorius AG, Гер-
мания). рН точки нулевого заряда исследуе-
мых сорбентов определяли методом “дрейфа 
рН” [28].

Физико-химические характеристики адсор-
бтивов представлены в табл. 1.

Адсорбцию салициловой кислоты с амино-
кислотой на  углеродном сорбенте проводили 
при условиях, аналогичных для адсорбции са-
лициловой кислоты из  индивидуального рас-
твора. Красители сорбировали при условиях, 
идентичных для их адсорбции на  углеродном 
сорбенте с салициловой кислотой [34].

Каждый эксперимент по  адсорбции повто-
ряли дважды и определяли среднее значение.
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РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование адсорбционных свойств углеродного 
сорбента 

На углеродном сорбенте исследована адсор-
бция фенилаланина из  водного раствора в  ин-
тервале концентраций 100–2500 мг/л при усло-
виях: объемное соотношение “сорбент–раствор 
аминокислоты” 1/50, статические условия, тем-
пература 25°С, рН = 4–6, продолжительность 
процесса 24 ч (рис. 1). 

С ростом концентрации фенилаланина 
увеличивается количество адсорбированной 
на  углеродном сорбенте аминокислоты. Для 
концентраций фенилаланина 2000 и  2500 мг/л 
не наблюдается изменение величины адсорбции, 
что свидетельствует о наступлении относитель-
ного равновесия в  системе между процессами 

адсорбция–десорбция и образовании монослоя. 
Максимальное количество адсорбированного 
фенилаланина за  24 ч составило 69.6  мг/г при 
концентрации исходного раствора фенилалани-
на 2000 мг/л.

Адсорбционные характеристики углеродного 
сорбента в отношении фенилаланина определя-
ли по уравнению мономолекулярной адсорбции 
Ленгмюра и уравнению Фрейндлиха (табл. 2).

Показано, что в интервале равновесных кон-
центраций 1.1–1585.6 мг/л изотерма адсорбции 
фенилаланина на  углеродном сорбенте описы-
вается уравнением Ленгмюра.

Проведен эксперимент по  адсорбции сали-
циловой кислоты на  углеродном сорбенте. Ус-
ловия: водные растворы, состоящие из  смеси 
салициловой кислоты с  заданной концентра-
цией (100–1500 мг/л) и  постоянной концен-
трации фенилаланина (2000 мг/л), объемное 

Таблица 1. Физико-химические характеристики адсорбтивов [29–33]

Физико-химические 
характеристики СК Фен Арг МГ МЖ

Структура

Молекулярная 
масса, г/моль 138.1 165.2 174.2 319.9 375.4

Размер молекул, нм 0.70 × 0.60 0.70 × 0.50 0.80 × 0.60 0.61 × 1.45 0.59 × 1.45

рКа/рI рКа = 2.97 рКа = 2.20  
рI = 5.48

рКа = 12.48  
рI = 10.76 рКа = 3.80 рКа = 1.30
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Рис. 1. Зависимость адсорбции фенилаланина от его 
концентрации на углеродном сорбенте.

Таблица 2. Параметры уравнений Ленгмюра, 
Фрейндлиха для адсорбции фенилаланина 
углеродным сорбентом

Параметры Углеродный сорбент
Уравнение Ленгмюра

атеор, мг/г 70.9
КL, л/мг 0.01
r2 0.991

Уравнение Фрейндлиха
атеор, мг/г 74.1
Кf 6.82
1/n 0.324
r2 0.976

Примечание: атеор – максимальная теоретическая величина ад-
сорбции; r2 – коэффициент корреляции; КL – константа урав-
нения Ленгмюра; Кf, n – постоянные уравнения Фрейндлиха.
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соотношение “сорбент–раствор кислот” 1/50, 
статические условия (постоянное встряхива-
ние), температура 25°С, рН = 2, время контак-
та 24 ч. В  аналогичных условиях исследована 
адсорбция салициловой кислоты с  заданной 
концентрацией (100–1500 мг/л) на  углеродном 
сорбенте из водного раствора в присутствии ар-
гинина (2000 мг/л) (рис. 2)

Установлено, что салициловая кислота без 
добавления в  систему аминокислот на  образце 
УС адсорбируется за 4 ч, в присутствии амино-
кислот – 24 ч. Но по количеству СК адсорбиру-
ется больше в присутствии аминокислот: из ин-
дивидуального раствора СК  – 90.0 ± 1.8  мг/г; 
в  присутствии фенилаланина  – 98.7 ± 2.0  мг/г, 
в присутствии аргинина – 95.2 ± 1.9 мг/г. 

Экспериментальная кривая адсорбции сали-
циловой кислоты из индивидуального раствора 
углеродным сорбентом в  интервале равновес-
ных концентраций 1.0–210.0 мг/л описывается 
уравнением Фрейндлиха: r2 = 0.990, Кf = 18.65, 
1/n = 0.31. Экспериментальные адсорбционные 
кривые при совместной адсорбции салициловой 
кислоты и  аминокислот описать уравнением 
Ленгмюра или Фрейндлиха не удалось (коэффи-
циенты корреляции ниже 0.8).

При повышении равновесной концентра-
ции салициловой кислоты до 143 мг/л ее адсор-
бция из  индивидуального раствора выше, чем 
в  присутствии аминокислот. Это можно объяс-
нить тем, что протекает конкурентная сорбция 
за  счет дисперсионного взаимодействия меж-
ду адсорбентом и  адсорбтивами за  свободные 

активные центры на  углеродном сорбенте, так 
как по  своим молекулярным размерам салици-
ловая кислота, фенилаланин иаргинин сопоста-
вимы (табл. 1) и не превышают средний размер 
пор углеродного сорбента (4 нм) [13].

В области высоких равновесных концентра-
ций (более 143 мг/л) величина адсорбции сали-
циловой кислоты на углеродном сорбенте выше 
в  присутствии аминокислот, чем из  индивиду-
ального раствора, что обусловлено образова-
нием водородной связи между карбоксильными 
группами салициловой кислоты и аминогруппа-
ми аргинина и фенилаланина [35, 36].

Изучение адсорбции СК из  более концен-
трированных растворов затруднено ввиду ее 
ограниченной растворимости в воде.

Физико-химические свойства  
исследуемых образцов

Исследованы физико-химические свойства 
образцов углеродных сорбентов после адсорб-
ции салициловой кислоты: в  присутствии фе-
нилаланина (образец УС-СК-Фен), аргинина 
(образец УС-СК-Арг) в  сравнении с  исходным 
углеродным сорбентом (образец УС) и  сорбен-
том, модифицированным салициловой кисло-
той (образец УС-СК).

Для всех образцов характерна мезопори-
стая структура с размером пор 4–6 нм (табл. 3). 
В процессе модифицирования наблюдается сни-
жение удельной поверхности в сравнении с ис-
ходным образцом УС в 1.9 раза для образца УС-
СК, в 2 раза для образца УС-СК-Фен и в 2.3 раза 
для образца УС-СК-Арг (табл. 3).

Титриметрическим методом H.P.Boehm 
определено количество кислородсодержащих 
групп на  поверхности исследуемых углеродных 
сорбентов (табл. 4, рис. 3).

Для модифицированных углеродных сорбен-
тов после адсорбции наблюдается увеличение 
количества кислородсодержащих групп по срав-
нению с исходным сорбентом. Адсорбция сали-
циловой кислоты из  индивидуального раствора 
и в присутствии фенилаланина приводит к уве-
личению доли кислых групп с  61% отн. для ис-
ходного сорбента до 89% отн. для образца УС-СК 
и до 83% для образца УС-СК-Фен. Для образца 
УС-СК-Арг, наоборот, наблюдается снижение 
доли кислых групп до 38% отн. и увеличение доли 
основных групп с 39 до 62% отн., что обусловле-
но основным характером аргинина, адсорбиро-
ванного на  поверхности углеродного сорбента 
совместно с салициловой кислотой.
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Рис. 2. Зависимость адсорбции салициловой кисло-
ты от ее концентрации на углеродном сорбенте из ин-
дивидуального раствора салициловой кислоты (1), 
в присутствии аргинина (2) и фенилаланина (3).
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Таблица 3. Текстурные характеристики образцов

Образец Удельная площадь 
поверхности SБЭТ, м2/г

Суммарный 
объем пор, см3/г

Объем мезопор, 
см3/г

Объем микропор,  
см3/г

Средний 
размер пор, нм

УС 311 0.294 0.253 0.041 4

УС-СК 160 0.234 0.234 – 5

УС-СК-Фен 155 0.208 0.208 – 5

УС-СК-Арг 136 0.219 0.208 – 6

Таблица 4. Содержание кислородсодержащих групп на поверхности углеродных сорбентов и рНтнз

Образец
Кислые группы, мг-экв/г

Основные группы,  
мг-экв/г рНтнз

карбоксильные группы фенольные группы 

УС 0.032 0.033 0.042 7.0

УС-СК 0.082 0.048 0.016 2.3

УС-СК-Арг 0.012 0.038 0.082 5.6

УС-СК-Фен 0.058 0.037 0.020 2.1
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Рис. 3. Соотношение кислородсодержащих групп на поверхности исследуемых сорбентов.
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Методом “дрейфа рН” определено рН точ-
ки нулевого заряда исследуемых углеродных 
сорбентов (табл. 4). Из представленных данных 
видно, что адсорбция салициловой кислоты 
из  индивидуального раствора и  в присутствии 
фенилаланина на  углеродном сорбенте приво-
дит к  смещению рН в  кислую область, что об-
условлено кислой природой адсорбтивов. Для 
образца углеродного сорбента, модифицирован-
ного салициловой кислотой в присутствии арги-
нина, наблюдается смещение рНтнз в щелочную 
область, что связано с основной природой арги-
нина.

Адсорбция метиленового голубого 
на модифицированных углеродных сорбентах

Исследована адсорбция метиленового голу-
бого в интервале концентраций 0.10–2.00 мг/мл 
на  углеродных сорбентах УС-СК-Фен, УС-СК-
Арг из водного раствора при условиях: объемное 
соотношение “сорбент–раствор” 1/10, статиче-
ские условия (периодическое перемешивание), 
температура 25°С, естественный рН, время кон-
такта 24 ч. 

На рис. 4 представлены адсорбционные кри-
вые МГ на углеродном сорбенте (УС), углеродном 
сорбенте с  салициловой кислотой (УС-СК)  [34] 
и  углеродном сорбенте с  салициловой кислотой 
и аминокислотами (УС-СК + Фен, УС-СК-Арг). 

 В табл. 5 представлены экспериментальные 
величины адсорбции красителя МГ на исследуе-
мых образцах.

В области равновесных концентраций 
0.0009–0.0118 мг/мл изотерма адсорбции МГ 
на  сорбенте УС-СК-Фен описывается урав-
нением Ленгмюра: r2 = 0.61, KL = 67.7 мл/мг, 
аmax = 21.9 мг/г. В области равновесных концен-
траций 0.0019–0.0488 мг/мл изотерма адсорб-
ции МГ на  образце УС-СК-Арг описывается 
уравнением Фрейндлиха: r2 = 0.97, KF = 353, 
1/n = 0.87.

Установлено, что в  интервале концентра-
ций метиленового голубого 0.10–2.00 мг/мл 
равновесие в  системе устанавливается за  24 ч. 
С ростом концентрации МГ величина адсорб-
ции закономерно увеличивается. Максималь-
ное количество метиленового голубого адсо-
рбируется на  модифицированных углеродных 
сорбентах с  салициловой кислотой и  амино-
кислотами. 

Основными факторами, определяющи-
ми адсорбционную способность углеродных 
материалов в  отношении МГ, являются их 
удельная поверхность, пористая структура 
и  наличие на  поверхности функциональных 
групп  [37, 38]. Увеличение адсорбционной 
способности модифицированных углеродных 
сорбентов с  салициловой кислотой и  амино-
кислотами в  отношении МГ обусловлено вза-
имодействием кислород- и  азотсодержащих 
функциональных групп с молекулами красите-
ля за  счет водородных связей и  электростати-
ческого притяжения [39–41].

Это так же согласуется с  предположени-
ем о  том, что азотсодержащие поверхностные 
группы вносят больший вклад в адсорбцию МГ 
на  углеродной поверхности за  счет электро-
статического притяжения неподеленной элек-
тронной пары атома азота и  катиона краси
теля [42].

Таблица 5. Адсорбция красителей на исследуемых 
углеродных сорбентах

Сорбент
Величина 

адсорбции МГ, 
мг/г

Величина 
адсорбции МЖ, 

мг/г

УС 18.1 ± 0.4 33.7 ± 0.7

УС-СК 18.2 ± 0.4 24.7 ± 0.5

УС-СК-Фен 24.3 ± 0.5 26.9 ± 0.5

УС-СК-Арг 26.6 ± 0.5 29.7 ± 0.6
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Рис.  4. Зависимость адсорбции МГ от  его кон-
центрации на  исходном углеродном сорбенте (1), 
углеродном сорбенте с  салициловой кислотой (2), 
углеродном сорбенте с салициловой кислотой и ар-
гинином (3) и  углеродном сорбенте с  салициловой 
кислотой и фенилаланином (4).
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Адсорбция метанилового желтого 
на модифицированных углеродных  

сорбентах

Исследована адсорбция метанилово-
го желтого (МЖ) в  интервале концентраций 
0.10–2.00 мг/мл на  углеродных сорбентах УС-
СК-Фен, УС-СК-Арг из водного раствора при 
условиях: объемное соотношение “сорбент–
раствор” 1/10, статические условия (перио-
дическое перемешивание), температура 25°С, 
естественный рН, время контакта 24 ч. 

На рис. 5 представлены адсорбционные кри-
вые МЖ исходным углеродным сорбентом (УС), 
углеродным сорбентом с салициловой кислотой 
(УС-СК)  [34] и  углеродным сорбентом с  са-
лициловой кислотой и  аминокислотами (УС-
СК-Фен, УС-СК-Арг). В  табл.  5 представлены 
экспериментальные величины адсорбции мета-
нилового желтого на исследуемых сорбентах. 

В области равновесных концентраций 
0.00024–0.00837 мг/мл изотерма адсорбции 
МЖ на  образце УС-СК-Фен описывается 
уравнение Фрейндлиха: r2 = 0.96, KF = 1063, 
1/n = 0.76. Экспериментальные адсорбцион-
ные кривые при адсорбции МЖ на  образце 
УС-СК-Арг описать уравнением Ленгмюра или 
Фрейндлиха не удалось (коэффициенты корре-
ляции ниже 0.8). 

Установлено, что в интервале исходных кон-
центраций метанилового желтого 0.10–2.00 мг/
мл продолжительность адсорбции составила 
24 ч. С  ростом концентрации МЖ величина 
адсорбции закономерно увеличивается. Мак-
симальной адсорбционной способностью в от-
ношении красителя МЖ обладает исходный 
углеродный сорбент УС, что обусловлено его 
большей удельной поверхностью. Образцы, 
модифицированные салициловой кислотой 
и  аминокислотами, превосходят по  данному 
показателю углеродный сорбент, модифициро-
ванный салициловой кислотой. Это может быть 
обусловлено ионным взаимодействием между 
сульфогруппой красителя, находящегося в рас-
творе в ионном виде, и аминогруппой модифи-
каторов [33, 43, 44].

Все исследуемые сорбенты характеризу-
ются высокой адсорбционной способностью 
по  отношению к  метаниловому желтому. Это-
му способствует природа красителя, который 
находится в  растворе в  анионной форме и  в 
щелочной среде рН = 9.6, при котором проис-
ходит адсорбция красителя на углеродных сор-
бентах [45, 46].

ЗАКЛЮЧЕНИЕ

Разработана методика модифицирования 
углеродного сорбента путем совместной адсорб-
ции салициловой кислоты с  аминокислотами 
из  водного раствора (аргинин, фенилаланин). 
Показано, что присутствие аминокислоты в рас-
творе увеличивает адсорбционную способность 
углеродного сорбента по отношению к салици-
ловой кислоте за счет образования водородной 
связи между карбоксильными группами салици-
ловой кислоты и аминогруппами аргинина и фе-
нилаланина.

Установлено, что добавка аминокислоты 
в процессе модифицирования углеродного сор-
бента салициловой кислотой увеличивает адсор-
бционную способность сорбента по отношению 
к красителям метиленовому голубому в 1.5 раза 
и метаниловому желтому в 1.2 раза за счет допол-
нительных взаимодействий между сульфогруп-
пой МЖ, диметиламиногруппами МГ и атомом 
азота в  аминогруппе кислот на  поверхности 
углеродного сорбента.
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